Борис Кузнецов - Философия оптимзма
- Название:Философия оптимзма
- Автор:
- Жанр:
- Издательство:Наука
- Год:1972
- Город:Ленинград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Кузнецов - Философия оптимзма краткое содержание
Философия оптимзма - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
С мыслью о Всбленной, которая сама является причиной существования каждой из составляющих ее частиц, мы встретимся при изложении современных неклассических идей. Сейчас мы только отметим, что идея Спинозы находится в главном фарватере физической мысли, несмотря на то, что ей пришлось два столетия дожидаться своего физического воплощения, т. е. появления теории, которая связывает, хотя бы гипотетически, концепцию существования тел с экспериментальными наблюдениями и претендует на объяснение экспериментальных результатов, не находящих иного объяснения.
Классическая наука объясняла существование тел тем, что некоторые более простые тела сгруппировались и образовали единое тело. Его свойства объясняются структурой, составом, расположением, взаимодействиями и движениями составляющих его элементов. Но такое объяснение отсылало от одной ступени структурной иерархии мира к другой. В конце стоял ответ, выводивший существование элементарных, далее недробимых частиц за пределы физического объяснения.
Изменение положения тел, их смещение, их ускорение теряли смысл без субстанциальных свойств. Но откуда взялись эти субстанциальные свойства? На этот вопрос классическая наука не давала ответа.
Как уже было сказано, Лейбниц и Ньютон наделили вещество свойством, которое отличает его от пространства, — способностью частей вещества взаимодействовать друг с другом. Бошкович считал частицы непротяженными центрами сил. Взаимодействие позволяет физически, в эксперименте, определить массу и заряд тела. Фарадей приписал взаимодействиям субстанциальный характер. Сила — это упругая силовая трубка, а частицы — это только концы силовых трубок, особые точки силового поля. В теории Максвелла поле вовсе эмансипировалось от тел; электромагнитные силы — замкнутые ‘ вихревые линии электромагнитного поля — могут существовать и двигаться в пространстве, где нет обычных тел, обладающих массами и зарядами.
Но все эти классические ответы на вопрос о субстанции, об отличии вещества от пространства, физического существования от поведения, в сущности, не выходили за пределы поведения и не решали проблемы существования. Взаимодействие частицы с другими частицами выражается той или иной, зависящей от поля траекторией, скоростью и ускорением частицы. Теперь мы бы сказали, что взаимодействие так или иначе искривляет мировые линии взаимодействующих частиц. Но здесь мы снова приходим к уже упоминавшейся сквозной проблеме, которая появляется в связи с каждой попыткой геометризации картины мира: чем же отличается мировая линия частицы от геометрического образа, чем она заполнена , каковы негеометрические события, заполняющие мировую линию?
Ни классическая наука в собственном смысле, ни теория относительности не давали ответа на этот вопрос. А о нем задумывались давно. В сущности спонтанные отклонения частиц от макроскопически предуказанного пути — clinamen Эпикура и Лукреция — должны были гарантировать подлинное бытие атома. Эпикурейцы шли и дальше. Они говорили не только о «бунте» атома — его спонтанном отклонении, но и о попеременном уничтожении и возникновении частицы на ее пути. Александр Афродизийский писал в начале III в. н. э. об эпикурейцах, что они думают, будто «движения нет, а есть только результат движения», т. е. частица, исчезая и затем возникая в другой клетке дискретного пространства, как бы движется вперед.
Почему в книге о прогнозах на 2000 г. мы уходим на две с лишним тысячи лет назад в прошлое, к Эпикуру? Это объясняется радикальным характером прогноза на 2000 г. в области фундаментальных знаний. Чем радикальней предвидимый переход к новым представлениям, тем радикальней связанная с ним ретроспективная переоценка ценностей, тем более мощный пласт уходящих в прошлое, привычных представлений поднимает и поворачивает современная мысль. При этом она не только меняет то, что в течение тысячелетий казалось незыблемым, но и находит в прошлом недоумения, противоречия, вопросы, адресованные будущему.
В чем же состоит то новое, что позволяет сейчас переоценить самые укоренившиеся представления? В чем состоит то радикальное обновление стиля фундаментальных исследований и те новые принципы науки, которые несут в себе зародыш новой, послеатомной цивилизации? Исходная область новой научной революции — теория элементарных частиц. Это никого не может удивить. То, что в каждую эпоху кажется элементарными частицами, представляет собой наиболее фундаментальное звено концепции мира. В течение двух тысячелетий элементарные частицы назывались атомами и казались состоящими из гомогенной, бескачественной материи. Потом эти атомы разделились на протоны, нейтроны и электроны, различающиеся по массе, заряду и продолжительности жизни. Потом к ним прибавились еще новые типы частиц, их сейчас десятки, быть может сотни. Новая ступень теории элементарных частиц будет состоять в систематизации известных сейчас частиц, а также новых, которые будут еще найдены. Но эта систематизация, по-видимому, будет принципиально отличаться от таблицы Менделеева. Физическая расшифровка периодической системы была классически структурной: атомы отличаются числом и группировкой субатомов. Маловероятно, что те частицы, которые сейчас называют элементарными, окажутся структурами, состоящими из меньших частиц. Скорее, их различия предстанут перед нами как выражение различных по характеру и интенсивности связей с другими частицами, может быть, с Вселенной в целом.
В середине нашего столетия исследование космических лучей и потоков частиц высокой энергии, которую они приобрели в ускорителях, привело к значительному расширению сведений об элементарных частицах. Дело не только в том, что увеличилось число известных нам типов элементарных частиц. Это увеличение ставит перед наукой весьма фундаментальные вопросы. Они еще далеко не решены, и современный физик с двойственным чувством воспринимает быстрое расширение таблицы элементарных частиц, даже с более сложным, чем двойственное. С одной стороны, налицо почти непрерывное расширение представлений о кирпичах мироздания, т. е. фундаментальных знаний. Открытия в этой области, которые когда-то были поворотными вехами, открывавшими новые эпохи в науке или во всяком случае длительные периоды (таким было открытие первых ставших известными элементарных частиц — электрона, протона, фотона), следуют сейчас с большой частотой. Отчасти обнадеживающей и вместе с тем (в этом состоит вторая сторона дела) пугающей. Потому что чем больше различных по типу элементарных частиц, тем, по-видимому, дальше не только классический идеал — объяснение мироздания движением частиц гомогенной материи, но вообще объяснение мироздания движением его элементарных «кирпичей».
Читать дальшеИнтервал:
Закладка: