Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии

Тут можно читать онлайн Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Текст, год 1996. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Собрание сочинений в 10 томах. Том 13. Сумма технологии
  • Автор:
  • Жанр:
  • Издательство:
    Текст
  • Год:
    1996
  • Город:
    М.
  • ISBN:
    5-7516-0072-X
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Станислав Лем - Собрание сочинений в 10 томах. Том 13. Сумма технологии краткое содержание

Собрание сочинений в 10 томах. Том 13. Сумма технологии - описание и краткое содержание, автор Станислав Лем, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать онлайн бесплатно ознакомительный отрывок

Собрание сочинений в 10 томах. Том 13. Сумма технологии - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Станислав Лем
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Точно так же, как этот портной, действует математика. Она создает структуры, но неизвестно чьи. Математик строит модели, совершенные сами по себе (то есть совершенные по своей точности), но он не знает, модели чего он создает. Это его не интересует. Он делает то, что делает, так как такая деятельность оказалась возможной. Конечно, математик употребляет, особенно при установлении первоначальных положений, слова, которые нам известны из обыденного языка. Он говорит, например, о шарах, или о прямых линиях, или о точках. Но под этими терминами он не подразумевает знакомых нам понятий. Оболочка его шара не имеет толщины, а точка — размеров. Построенное им пространство не является нашим пространством, так как оно может иметь произвольное число измерений. Математик знает не только бесконечности и трансфинитности, но также и отрицательные вероятности. Если нечто должно произойти наверное, его вероятность равна единице. Если же явление совсем не может произойти, она равна нулю. Оказывается, что может случиться нечто меньшее, чем просто ненаступление события.

Математики прекрасно знают, что не знают, что делают. Весьма компетентное лицо, а именно Бертран Рассел, сказал: «Математика может быть определена как доктрина, в которой мы никогда не знаем ни о чем говорим, ни того, верно ли то, что мы говорим» [157].

Математика в нашем понимании является пантокреатикой, реализуемой на бумаге с помощью карандаша. Поэтому мы именно о ней говорим: нам кажется, что это она в будущем запустит «всемогущие генераторы» других миров. Конечно, мы от этого еще далеки. Вероятно также, что часть математики навсегда останется «чистой», или, если хотите, пустой, подобно тому, как пусты одежды на складе сумасшедшего портного.

Язык — это система символов, делающих возможным общение, так как эти символы поставлены в соответствие явлениям внешнего (гроза, собака) или внутреннего (печально, приятно) мира. Если бы не было действительных бурь и грусти, не было бы и этих слов. Повседневный язык нечеток, границы употребляемых в нем значений размыты, кроме того, язык как целое эволюционирует вместе с общественными и культурными изменениями. Дело в том, что язык является «неавтономной» структурой, так как языковые образования соотносятся с внеязыковыми ситуациями. В некоторых обстоятельствах язык может стать высокоавтономным («Крылышкуя золотописьмом тончайших жил», «Тарарахнул зензивер») как благодаря поэтическому словотворчеству (приведенный пример), так и благодаря тому, что он становится языком логики и подвергается строгой муштре. Однако всегда удается проследить его генетические связи с действительностью. Что касается символов математического языка, то они не относятся ни к чему, кроме него. Шахматы несколько похожи на математическую систему. Они являют собой замкнутую систему с собственными основными положениями и правилами поведения. Нельзя задавать вопрос об истинности шахмат, так же как и нельзя спрашивать об истинности чистой математики. Можно лишь спросить, разыграна ли данная математическая теория или данная партия шахмат правильно, то есть в соответствии с правилами. Однако шахматы не имеют никакого прикладного значения [158], в то время как математика такое значение имеет. Существует точка зрения, которая эту практическую пригодность математики объясняет очень просто. Природа по самому своему существу «математична». Так считали Джине и Эддингтон, я думаю, что и Эйнштейну такая точка зрения также не была чужда. Это следует из его высказывания: «Herr Gott ist raffiniert, aber boshaft ist er nicht» [159]. Запутанность Природы — так я понимаю эту фразу — можно разгадать, поймав ее в сети математических закономерностей. Если бы, однако, Природа была злорадной — аматематичной, — то она представляла бы собой как бы злобного лгуна, была бы нелогичной, противоречивой, по крайней мере, неопределенной в событиях, не поддавалась бы расчетам. Как известно, Эйнштейн до конца жизни возражал против принятия квантового индетерминизма и пытался в мысленных экспериментах свести его явления к детерминистическим законам.

Начиная с XVI века физики перетряхивают склады с залежами «пустых одежд», создаваемых математикой. Матричное исчисление было «пустой структурой», пока Гейзенберг не нашел «кусочка мира», к которому подходит эта пустая конструкция. Физика кишит такими примерами [160].

Процедура теоретической физики, а заодно и прикладной математики такова: эмпирическое утверждение заменяется математическим (то есть определенным математическим символом сопоставляются физические значения, вроде «массы», «энергии» и т.д.), полученное математическое выражение преобразуется в соответствии с законами математики (это чисто дедуктивная, формальная часть процесса), а окончательный результат путем повторной подстановки материальных значений преобразуется в эмпирическое утверждение. Это новое утверждение может предсказывать будущее состояние явления или может выражать некоторые общие равенства (например, что энергия равна произведению массы на квадрат скорости света) или физические законы.

Итак, физику мы переводим на язык математики, с математикой обращаемся по-математически, результат снова переводим на язык физики и получаем соответствие с действительностью (конечно, при условии, что все действия мы проводим, опираясь на «доброкачественную» физику и математику). Это, безусловно, упрощение, так как современная физика настолько «пропитана» математикой, что даже исходные положения физики содержат ее в изобилии.

Нам кажется, что из-за универсальности связей Природы эмпирическое знание всегда может быть только «неполным, неточным и ненадежным», по крайней мере при сопоставлении его с чистой математикой, которая «полна, точна и надежна». Следовательно, это неправда, что математика, используемая физикой или химией, чтобы объяснить окружающий мир, рассказывает об этом мире слишком мало, что этот мир «утекает» сквозь ее формулы, неспособные охватить его достаточно всесторонне. Скорее все обстоит наоборот. Математика говорит о мире (то есть старается говорить) больше, чем можно о нем сказать, и это в настоящее время приносит науке много беспокойств, которые, безусловно, будут в конце концов преодолены. Может, когда-нибудь и матричное исчисление будет заменено в квантовой механике иным, позволяющим осуществлять более точные предсказания. Но тогда будет признана устаревшей только современная квантовая механика. Матричное исчисление не устареет, ибо эмпирические системы утрачивают свою актуальность, математические же — никогда. Их бессмертие — в их «пустоте».

Что, собственно говоря, значит «нематематичность» Природы? Мир можно трактовать двояко. Либо каждый элемент реальности имеет точный эквивалент (математический «двойник») в физической теории, либо же не имеет его (то есть не может иметь). Если для данного явления возможно создать теорию, которая не только предсказывает определенное конечное состояние явления, но также и все промежуточные состояния, причем на каждом этапе математических преобразований можно назвать материальный эквивалент соответствующего математического символа, то в этом случае можно говорить об изоморфизме теории и реальности. Тем самым математическая модель является «двойником» реальности. Такой постулат был свойствен классической физике, и от него повелось убеждение в «математичности Природы» [161].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Станислав Лем читать все книги автора по порядку

Станислав Лем - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Собрание сочинений в 10 томах. Том 13. Сумма технологии отзывы


Отзывы читателей о книге Собрание сочинений в 10 томах. Том 13. Сумма технологии, автор: Станислав Лем. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x