Коллектив авторов - Теорема Геделя о неполноте [Фейк]

Тут можно читать онлайн Коллектив авторов - Теорема Геделя о неполноте [Фейк] - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теорема Геделя о неполноте [Фейк] краткое содержание

Теорема Геделя о неполноте [Фейк] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Теорема Геделя о неполноте [Фейк] - читать онлайн бесплатно полную версию (весь текст целиком)

Теорема Геделя о неполноте [Фейк] - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Идеи Пенроуза и Хамероффа укладываются в общую картину следующим образом. Есть (косвенные) экспериментальные свидетельства, а также некие физические соображения в пользу того, что в микротрубочках тубулины могут образовывать большие когерентные квантовые системы. Другими словами, большая совокупность тубулинов может некоторое время жить "квантовой жизнью", а потом переходить в классическое состояние с помощью невычислимой процедуры OR. Вот этот переход и есть "момент сознания", или, как пишут авторы, используя терминологию английского философа А. Н. Уайтхеда (Alfred North Whitehead), "элементарный фактор чувственного опыта" ("occasion of experience"). Поток таких событий и образует субъективно ощущаемый "поток сознания".

Что такое "большая совокупность"? Исходя из формулы Пенроуза, связывающей среднюю продолжительность "квантовой жизни" системы с ее "гравитационной энергией", и данных некоторых экспериментов в нейрофизиологии, среднее количество тубулинов, находящихся в сцепленном состоянии при реализации "момента сознания", оценивается в один миллиард. Для этого (тоже оценочно) с большим запасом хватает тысячи нейронов. Более тонкий анализ приводит к модели "оркестрованной OR" (orchestrated OR), в которой участвуют еще и белки MAPs, связывающие микротрубочки друг с другом. Количество таких событий в мозгу человека может достигать сотен миллионов в секунду. В нервной системе червя, с его 302 нейронами и примерно тремя миллиардами тубулинов, "моментов сознания" будет не более двух в секунду - на большее нейронов не хватит.

Рис. 2. Модель работы "клеточного автомата" в микротрубочке. Черные и белые "крючки" - тубулины в разных конформациях. Серые "крючки" - совокупность тубулинов, находящихся в квантовой когерентной суперпозиции. Этапы 2-6 показывают рост этой совокупности вплоть до момента объективной редукции (OR), после которой возникает новое классическое состояние автомата (7). Переход от 6 к 7 связывается с "моментом сознания".

На рисунке 2 показана схема строения нейрона и расположение микротрубочек. На рисунках 3 и 4 проиллюстрирована (напомню, чисто гипотетическая!) "анатомия" одного "момента сознания".

Рис. 3. Схема центральной части нейрона. Показаны массивы параллельных микротрубочек, соединенных связанными с ними белками (MAPs).

Рис. 4. Предполагаемая схема развития квантовой когерентности в микротрубочках. По достижении некоторого порога происходит "объективная редукция", связываемая в концепции Пенроуза-Хамероффа с "моментом сознательного опыта".

Несколько замечаний напоследок

Писать такие книги, как "Тени разума", могут себе позволить только очень авторитетные ученые. Точнее, написать-то может любой, но мало кто станет читать очередной вариант "теории всего", принадлежащий автору, до этого не проявившему себя в науке очень и очень ярко. Каждое сочинение такого рода воспринимается как попытка угадать дальнейший ход развития науки. А это безумно трудно и, кроме того, вызывает почти болезненное раздражение у многих активно работающих профессионалов: мало ли какие гипотезы можно выдумать...

Пенроуз - один из самых строгих критиков собственных работ. Говоря о положительной программе, он то и дело подчеркивает: речь идет лишь о предположениях (5). Но ведь и предположения бывают разного качества. Например, книга "Что такое жизнь с точки зрения физики" Э. Шредингера сыграла большую роль не потому, что там объяснено, что такое жизнь, - этого еще никто не объяснил, хотя книга вышла 50 лет назад. Но эта книга стимулировала множество плодотворных идей. Точно так же и то, что нам предстоит узнать о физической основе сознания, наверняка будет сильно отличаться от первоначальных набросков, которые сделали Пенроуз и Хамерофф. Если Пенроуз прав, сам ответ будет сформулирован на языке, которого пока просто нет. И не очень рискованно предположить, что и этот ответ не будет окончательным.

Но одно мне кажется бесспорным: работы, обсуждавшиеся выше, задают современный уровень, на котором только и интересно сегодня говорить о проблемах естественного и искусственного интеллекта в рамках физики, математики, биологии и компьютерных наук.

Пределы доказуемости

Грегори Чейтин

?В мире науки? №6, 2006

Из идей сложности и случайности, впервые высказанных Готфридом Лейбницем в его ?Рассуждении о метафизике? (1686), и их подтверждения в современной теории информации следует, что невозможно создать ?самую общую теорию всего? в математике.

В 1956 году журнал Scientific American опубликовал статью Эрнста Нагеля (Ernest Nagel) и Джеймса Ньюмана (James R. Newman) ?Доказательство Гёделя?. Через два года ее авторы выпустили одноименную книгу, которая переиздается до сих пор. В те дни я был еще ребенком, но до сих пор помню трепет, который испытал, открыв ее в Нью-йоркской публичной библиотеке.

Меня поразило то, как Курт Гёдель (Kurt G?del) использовал математику, чтобы показать, что ее собственные возможности ограничены. Он опроверг высказанное около столетия назад Давидом Гильбертом утверждение о существовании полной теории математики, т.е. конечной совокупности принципов, из которых с помощью последовательного использования правил математической логики можно вывести все положения математики. Гёдель показал, что существуют истинные математические утверждения, которые не могут быть доказаны таким образом. Его выводы основаны на двух самоотносимых парадоксах: ?данное утверждение ложно? и ?данное утверждение недоказуемо?. (Более подробные сведения о теореме неполноты Гёделя можно найти на сайте Scientific American.)

Существование специфического строго определенного числа ?, которое невозможно вычислить с помощью конечной компьютерной программы, разбивает надежду на создание всеобъемлющей математической системы, в рамках которой можно строго доказать любое истинное утверждение (изображение: www.sciam.ru)

Всю жизнь я разбирался с доказательством Гёделя и теперь, полвека спустя, издал собственную книжку. В какой-то степени это моя версия книги Нагеля и Ньюмана, однако доказательство Гёделя ? не главная ее тема. Моя работа основана на измерении информации и доказательстве того, что некоторые математические факты не удается втиснуть в теорию, потому что они слишком сложны. Согласно моему подходу, Гёдель открыл только верхушку айсберга: существует бесконечное множество верных математических теорем, которые невозможно доказать, исходя из конечной системы аксиом.

Сложность и законы науки

Готфрид Лейбниц, которому в Лейпциге поставлен памятник, еще 300 лет назад предвидел многие свойства алгоритмической информации (фото с сайта www.uni-leipzig.de)

В 1686 году было издано философское эссе Готфрида Лейбница (Gottfried W. Leibniz) ?Рассуждения о метафизике? (Discours de m?taphysique), в котором поставлен вопрос: как отличить факты, которые можно описать неким законом, от фактов, никаким законам не подчиняющихся? В четвертом разделе своего эссе Лейбниц высказал очень простую и глубокую мысль: теория должна быть проще данных, которые она объясняет, иначе она не объясняет ничего. Концепция научного закона становится бессмысленной, если допускает неограниченный уровень математической сложности, потому что в таком случае всегда можно сформулировать закон независимо от того, насколько случайны и беспорядочны факты. И наоборот, если единственный закон, объясняющий какие-то данные, оказывается слишком сложным, то рассматриваемые данные на самом деле не подчиняются никакому закону.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теорема Геделя о неполноте [Фейк] отзывы


Отзывы читателей о книге Теорема Геделя о неполноте [Фейк], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x