Г Гутнер - Онтология математического дискурса
- Название:Онтология математического дискурса
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Г Гутнер - Онтология математического дискурса краткое содержание
Онтология математического дискурса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Описанная трудность была предметом весьма пространного рассуждения Бл. Августина, который, пытаясь рассмотреть темпоральную природу восприятия, пришел к выводу, что существует только настоящее ([1], с. 297). Августин недоумевает, как можно сравнивать по длительности различные промежутки времени, когда каждый такой промежуток относится к прошлому или к будущему и не может быть целиком представлен сравнивающему (с. 293-294). Он также задается вопросом, как можно говорить о прошлых и будущих событиях: ведь говорить о них, значит говорить о том, чего нет. Как например, можно, видя зарю, предсказывать восход солнца и даже представлять его. Последнее, поясняет Августин, возможно, только если представление восхода, которому надлежит произойти в будущем, присутствует как настоящее в душе. Воображаемая картина восхода есть также настоящее, как и созерцаемая картина зари. Способность воображения позволяет актуализировать несуществующее, делая его сущим (с.296-297). Точно также становится сущим и прошлое, которое актуализируется, благодаря памяти. Августин пишет: "Совершенно ясно теперь одно: ни будущего, ни прошлого нет, и неправильно говорить о существовании трех времен: прошедшего настоящего и будущего. Правильней было бы, пожалуй говорить так: есть три времени - настоящее прошедшего, настоящее настоящего и настоящее будущего. Некие три времени эти существуют в нашей душе и нигде в другом месте я их не вижу: настоящее прошедшего - это память; настоящее настоящего - его непосредственное созерцание; настоящее будущего - его ожидание" (с. 297, курсив мой - Г.Г.).
Целостность предмета (или ситуации) восстанавливается, следовательно, благодаря памяти и воображению. Вспомним, что нечто подобное предполагал и Брауэр: рассматривая когнитивную деятельность человека, он представлял ее в виде последовательности дискретных актов. Важной характеристикой мысли была для него при этом не только способность продолжить последовательность, совершив очередной акт, но и способность "удерживать достаточно длинную цепь 'вещей' с тем, чтобы иметь возможность перейти мысленно от последней к более ранней." Здесь однако нет еще решения проблемы. Обращение к памяти не позволяет создать целое, поскольку актуализируя прошлое, мы обращаем в след (или в память) настоящее (которое, впрочем, тут же становится прошлым). Если пользоваться примером Августина, то воображаемый восход солнца, как актуальное и явленное в настоящем представление, заставляет отвлечься от созерцания зари. Последнее перестает быть созерцанием, а становится следом, удерживаемом в душе. Даже если зрелище зари само по себе никуда не делось, оно станет актуальным для нас только тогда, когда мы, отвлекшись от воображаемого восхода, вновь обратимся к его непосредственному созерцанию.
Некоторый намек на разгадку Августин дает, когда возвращается к проблеме сопоставления временных промежутков. Мы можем измерить промежутки времени, сопоставляя их друг с другом, поскольку в душе сейчас присутствует память о них. "В тебе, душа моя, измеряю я время... Впечатление от проходящего мимо остается в тебе, и его-то, сейчас существующее, я измеряю, а не то, что оставило" (с. 305). Следовательно, наряду с протекающим должно быть какое-то странное вневременное представление о целом временном промежутке. К нему, как к целому должна существовать возможность обратиться 'сейчас', в настоящем. Причем не к нему одному, но к нескольким сопоставляемым интервалам одновременно. Но точно также, как об интервале времени, можно говорить о любом предмете, который, будучи представлен как последовательность точечных актуализаций, должен также присутствовать как целое, в любой момент актуальное представление. Но такое представление не может быть действительным объектом. Мы определяем время последовательностью синтетических актов, в результате которых появляется ряд действительных объектов. Целое, строящееся из этих объектов как элементов, может быть только следом и никогда не обнаруживается актуально. В любой момент присутствующее может быть только вне времени, но это не есть действительность. Действителен лишь единичный воспринимаемый объект, а то, что представлено в любой момент не единично. Оно либо материально, либо в воображении может быть воспроизведено многократно, а потому является общим для многих актуализаций. Иными словами, речь здесь может идти о трансцендентальной схеме, вневременной структуре конструируемого в дискурсе объекта. Если что и может помочь нам удерживать представление о предмете как о целом, то только она. Однако детальное рассмотрение всего, что касается схематизма, как уже не раз отмечалось в настоящей работе, вызывает естественное затруднение.
Общность трансцендентальной схемы многим единичным объектам составляет существо второй проблемы, которая, как мы увидим, столь же стара, как и первая. Вопрос состоит в следующем: почему, воспроизводя второй раз некоторую конструкцию, мы знаем,что строим именно эту конструкцию, а не какую-либо другую? Почему, например, доказав один раз теорему о внутренних углах треугольника и произведя при этом соответствующее построение, мы не сомневаемся в возможности сделать это же самое построение еще раз, доказав вновь эту же теорему. Мы имеем веские основания для различения построенных конфигураций (они отличны по времени), но основания для их отождествления остаются пока проблематичными.
Возможность отождествления отличных по времени единичных конструкций эквивалентна общности суждения или синтезируемого этим суждением понятия. Суждение является общим поскольку справедливо для любого предмета, построенного сообразно данному понятию. Но должны быть основания для того, чтобы считать данное понятие общим для многих объектов. Каждый из этого множества объектов конструируется сообразно одному и тому же понятию, т.е. сообразно одной и той же трансцендентальной схеме. Но что значит "одна и та же"? Отождествляя построенные по одной и той же в разное время объекты, мы ссылаемся на тождественность схемы как на критерий. Но тогда мы должны обладать каким-то критерием для отождествления использованных в разное время схем, что тут же обеспечивает регресс в дурную бесконечность. Даже если мы будем считать, что схема остается одной и той же в смысле нумерического единства, как одна и та же вещь, то проблема отождествления не решается, поскольку мы не имеем каких-либо оснований для утверждения, что в очередной раз обратились к той же схеме (подобно, например, тому, как каждый раз, забивая очередной гвоздь, мы берем тот же самый молоток).
Понятие о нумерическом единстве (или единстве по числу) исключительно важно для нашего рассуждения и должно быть надлежащим образом уточнено. Боэций ([9] с. 45) пишет о "различии по числу" как о "различии при перечислении". "Когда мы говорим: 'Вот это - Платон, а вот это - Сократ' - мы получаем две единицы; точно также если бы мы коснулись пальцем обоих, говоря: 'Один' - о Сократе, 'Еще один' - о Платоне, мы перечислили бы две разные единицы". Из этого отрывка следует, что единство по числу подразумевает индивидуацию с помощью непосредственного указания. Заметим, что именно это происходит в экспозиции теоремы, где непосредственно предъявляется единичный объект построенный здесь и сейчас. Сама единичность, таким образом, эквивалентна непосредственному указанию ("Вот это"), которое есть не что иное как актуализация объекта, связанная с данным моментом времени, с настоящим. Из этого следует, что ни о каком нумерическом единстве схемы не может быть и речи.
Читать дальшеИнтервал:
Закладка: