П Гайденко - История греческой философии в её связи с наукой
- Название:История греческой философии в её связи с наукой
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
П Гайденко - История греческой философии в её связи с наукой краткое содержание
История греческой философии в её связи с наукой - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Прикладная и чистая математика. Платон о неприменимости механики в геометрии
Благодаря своей функции посредника между сферами чувственного и идеального бытия математика может выполнять, согласно Платону, две разные задачи: во-первых, служить цели приобщения человека к более высокому - к созерцанию идеи блага - и, во-вторых, быть средством упорядочения и расчленения низшей сферы - текучего и неуловимого становления. Первая ее функция оценивается Платоном неизмеримо выше второй: "При устройстве лагерей, занятии местностей, стягивании и развертывании войск и разных других военных построениях как во время сражения, так и в походах, конечно, скажется разница между знатоком геометрии и тем, кто ее не знает. - Но для этого было бы достаточно какой-то незначительной части геометрии и счета. Надо, однако, рассмотреть преобладающую ее часть, имеющую более широкое применение: направлена ли она к нашей цели, помогает ли она нам созерцать идею блага?"
Всякое применение математики к познанию эмпирических явлений оценивается Платоном как ее прикладная функция, и хотя он против этого применения не возражает, но опасается, как бы из-за него не затемнилось и не исказилось понимание самой природы и сущности как математики, так и всей науки вообще. А это "затемнение и искажение", согласно Платону, сказывается в том, что из-за возможности применять математические знания на практике в саму математику вносятся механические методы.
"Кто хоть немного знает толк в геометрии, - говорит Сократ в диалоге "Государство", - не будет оспаривать, что наука эта полностью противоположна тем словесным выражениям, которые в ходу у занимающихся ею.
- То есть?
- Они выражаются как-то очень забавно и принужденно. Словно они заняты практическим делом и имеют в виду интересы этого дела, они употребляют выражение "построим" четырехугольник, "проведем" линию, "произведем наложение" и так далее: все это так и сыплется из их уст. А между тем все это наука, которой занимаются ради познания.
- Разумеется.
- Не оговорить ли нам еще вот что...
- А именно?
- Это наука, которой занимаются ради познания вечного бытия, а не того, что возникает и гибнет... Значит, она влечет душу к истине и воздействует на философскую мысль, стремя ее ввысь, между тем как теперь она у нас низменна вопреки должному".
Платон здесь подвергает критике применение механики к решению геометрических проблем. Так, Архит при решении задачи удвоения куба, которая, по свидетельству древних источников, была поставлена как практическая задача удвоения объема делийского жертвенника, применял метод построения, вводя при этом в геометрию механические методы.
Это предположение подтверждается и сообщением Плутарха. "Знаменитому и многими любимому искусству построения механических орудий, - пишет Плутарх, - положили начало Евдокс и Архит, стремившиеся сделать геометрию более красивой и привлекательной, а также с помощью чувственных, освязаемых примеров разрешить те вопросы, доказательство которых посредством одних лишь рассуждений и чертежей затруднительно; такова проблема двух средних пропорциональных - необходимая составная часть многих задач, для разрешения которой оба применили механическое приспособление, строя искомые линии на основе дуг и сегментов. Но, так как Платон негодовал, упрекая их в том, что они губят достоинство геометрии, которая от бестелесного и умопостигаемого опускается до чувственного и вновь сопрягается с телами, требующими для своего изготовления длительного и тяжелого труда ремесленника, механика полностью отделилась от геометрии и, сделавшись одною из военных наук, долгое время вовсе не привлекала внимания философов".
Свидетельство Плутарха полностью совпадает с приведенными рассуждениями Платона, что в свою очередь придает б(льшую достоверность самому этому свидетельству. Плутарх, как, впрочем, и сам Платон, хорошо передает атмосферу научной жизни античной Греции, борьбу тенденций в науке, в частности в математике, которая действительно привела к значительному обособлению механики и математики, соединение которых можно наблюдать только в более поздний период, например у Архимеда.
Было бы, однако, не совсем справедливо приписывать одному лишь Платону и его Академии склонность к разделению теоретической и практически-прикладной областей: эта склонность характерна вообще для подавляющего большинства греческих философов, в том числе и для Демокрита, и для Аристотеля, и для Эпикура. Именно это разделение двух сфер привело, с одной стороны, к вычленению науки как некоторого самостоятельного по отношению к практической жизни теоретического образования, органически связанного с философией, какого не было на Востоке. С другой стороны, это разъединение (конечно, всегда относительное, а не абсолютное) обусловило специфический характер древнегреческой науки вообще, а математики в частности, благодаря которому она отличается от науки нового времени - последней свойственна гораздо более интимная связь с "механическими приспособлениями", как выразился Плутарх.
Итак, Платон решительно выступает против внесения в геометрию механических методов; но это еще не значит, что он отождествляет геометрические фигуры с самими идеями и не ставит специально вопроса о их существовании - вопроса, который должен обязательно возникнуть, если онтологический статус геометрических объектов иной, чем статус идей.
Прокл о воображаемом движении
Платон считал, что предпосылкой существования геометрических объектов является пространство - нечто среднее между чувственными вещами и умопостигаемыми идеями. О нем не может быть достоверного знания, какое получают только посредством ума, но опираясь на него, геометрия "строит" свои объекты.
Однако вопрос этот, видимо, вызывал много споров, поскольку действительно его решение у Платона лишь схематически намечено, но не разработано в деталях. Так, Аристотель постоянно задает Платону и платоникам вопрос, к какому роду бытия принадлежат геометрические объекты в отличие от арифметических и "из чего" они образованы. "...Оказывается необходимым, пишет Аристотель, - устанавливать еще другой род числа, с которым имеет дело арифметика, и также все то, что у некоторых получает обозначение промежуточных объектов; так вот, эти объекты - как они существуют или из каких образуются начал? а также - почему они будут находиться в промежутке между здешними вещами и числами самими по себе?"
Надо полагать, в платоновской Академии продолжалось обсуждение вопроса о том, как существуют геометрические объекты и из каких "начал" образуются; не удивительно, что этим вопросам уделяют большое внимание неоплатоники, в частности Прокл в своем комментарии к "Началам" Евклида.
Читать дальшеИнтервал:
Закладка: