В Степин - Новая философская энциклопедия. Том четвёртый Т—Я
- Название:Новая философская энциклопедия. Том четвёртый Т—Я
- Автор:
- Жанр:
- Издательство:МЫСЛЬ
- Год:2010
- Город:Москва
- ISBN:978-2-244-01115-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
В Степин - Новая философская энциклопедия. Том четвёртый Т—Я краткое содержание
Новая философская энциклопедия дает обзор мировой философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения российских и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе сводом философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.
При подготовке данного издания внесены некоторые уточнения и дополнения. В частности, в первом томе помещена статья, посвященная 80-летию Института философии РАН в четвертом - именной указатель по всем томам.
Новая философская энциклопедия. Том четвёртый Т—Я - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
216
ФИЛОСОФИЯ МАТЕМАТИКИ теллектуального созерцания, интуиции, дающей возможность прямого усмотрения истины. Такое прямое усмотрение возможно, однако, лишь тогда, когда мы имеем дело с наиболее простыми и вместе с тем фундаментальными понятиями — теми, которые недоступны никакому анализу и представлению через другое. В качестве такого фундаментального и непосредственно ясного понятия Декарт указывает протяженность. Это сразу делает науку, изучающую протяженные конфигурации — геометрию, — основанием для всех остальных наук. Именно сведением к протяженности должна быть обоснована истинность всех научных понятий. Геометрическая интуиция (созерцание протяженных величин) служит основанием и для самой математики. С помощью отношений величин Декарт вводит числа и числовые отношения, а алгебраические уравнения обретают смысл потому, что рассматриваются как уравнения линии. Возможности геометризации в познании природы Декарт считал практически безграничными. Сам он не только пытался выстроить на этой основе почти все естественно-научные дисциплины (включая, напр,, физиологию), но и не исключал возможности применения своего универсального метода и к объяснению человеческого поведения. Оценка математики в философии Беркли противоположна позиции Декарта в том смысле, что он не только не считает математические понятия фундирующими знание, но, напротив, пытается показать, что математика, как никакая другая наука, склонна к заблуждениям и противоречиям. Беркли во многом предвосхитил дискуссии об основаниях математики начала 20 в., указав, что нужно с особой тщательностью подходить к процедуре образования математических понятий, чтобы избежать ошибок и парадоксов в этой науке. Правильно образованным Беркли считал то понятие, которое непосредственно выражает данные чувств. Существует лишь то, что воспринимается, а все остальное есть способ репрезентации воспринятого. Число и геометрическая фигура — именно такие репрезентанты. Однако, комбинируя разные репрезентации, математик может очень далеко уйти от их основы и соорудить такие отвлеченные конструкции, которым не соответствует никакое ощущение. Беркли предлагал очистить математику от беспочвенных абстракций, критикуя прежде всего исчисление бесконечно малых, которое он находил противоречивым и к тому же совершенно бесполезным. Позиция тех, кто, подобно Декарту, считал математику основой всякого научного знания, оказывается более выигрышной с точки зрения развития математического естествознания, поскольку она объясняет необычайную эффективность математики в исследовании природы. Однако критика математического знания с позиций эмпиризма (в чем Беркли, по- видимому, преуспел больше других) предлагала более трезвое отношение к математике, противопоставляя рационалистическому энтузиазму намерение установить границы ее применимости. Обе названные интенции были реализованы Кантом, который, с одной стороны, поставил задачу обосновать использование математики в естествознании, а с другой — ясно определить границы как математики, так и всего естествознания в целом. Кант определил число и величину как априорные формы знания, помимо которых рассудок вообще не может мыслить ни одного явления. Знание природы состоит в конструировании природных объектов сообразно правилам рассудка, а поскольку число и величина задают такие правила, постольку любой объект оказывается прежде всего математическим. Все в природе измеримо и исчисляемо — по-другому мы просто не можем ее мыслить. Вместе с тем математика всегда остается в сфере чувственности. Ее понятия применимы лишь к тому, что доступно непосредственному созерцанию, которое может быть только чувственным (а не интеллектуальным, как полагал Декарт). Такой подход к математике почти не вызывает трудностей, если речь идет о Евклидовой геометрии, алгебре и арифметике. Однако проблем исчисления бесконечно малых Кант, в отличие от Беркли, почти не касался. Философское обоснование математического знания постоянно обсуждалось не только философами, но и математиками. Однако пик озабоченности ведущих математиков философскими проблемами пришелся на начало 20 в. и был связан с разразившимся в это время кризисом оснований. Возникшие тогда направления в математике (их обычно выделяют четыре: логицизм, интуиционизм, формализм и теоретико-множественное направление) различаются прежде всего философскими установками, повлиявшими в свою очередь на структуру развиваемого ими математического дискурса. Впрочем, позиция каждого направления была тесно связана с философской классикой. Рассел, сформулировавший философскую базу логицизма, во многом солидаризировался с английским эмпиризмом. Он исходил из того, что основание математики лежит вне ее и все математическое знание должно быть фундировано нематематическими посылками. Истинность математических суждений обнаруживается их сведением к наиболее простым и непосредственно устанавливаемым суждениям о реальности, т. е. эмпирическим фактам. Рассел был убежден в том, что математика будет иметь смысл (и избавится от противоречий), когда будет показано, что она отражает какое-то реальное положение дел. Наибольшую сложность в его концепции представляло объяснение того, что собственно означает это реальное положение дел, т. е. что следует называть фактами и как их устанавливать. Прямо противоположная позиция была занята основателем интуиционистской школы Брауэром. Он считал математику вполне самодостаточной дисциплиной, основания которой лежат внутри ее самой. Более того, по мнению Брауэра, математика является наиболее чистым выражением фундаментальных интуиции, лежащих в основе всякой когнитивной деятельности. Говоря об интуиции, он прежде всего имел в виду интуицию числового ряда, которая, будучи непосредственно ясна сама, задает априорный принцип любого математического (да и не только математического) рассуждения. Последнее он представлял как последовательность конструктивных действий, осуществляемых одно за другим согласно некоторому закону. Обоснованность математических понятий поэтому оказывалась тождественна их конструктивности. По Бра- уэру, все неконструктивные абстракции (прежде всего абстракция актуальной бесконечности) должны быть устранены из математики. Идея конструктивности была использована и Гильбертом, предложившим формалистическую программу обоснования математики. Его проект включал два основных пункта: 1) аксиоматизация основных математических дисциплин и 2) доказательство непротиворечивости аксиоматически заданных теорий в рамках метаматематики. Первый пункт означал особую трактовку онтологического статуса математических объектов. Они рассматривались всего лишь как символы или их комбинации, не имеющие никакой сущности и определения. Их определенность возникает только благода-
Читать дальшеИнтервал:
Закладка: