Георг Гегель - Наука логики. Том II
- Название:Наука логики. Том II
- Автор:
- Жанр:
- Издательство:Соцэкгиз.
- Год:1939
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Гегель - Наука логики. Том II краткое содержание
«Наука логики» — важнейшее сочинение Гегеля
Наука логики. Том II - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
лучается множество определений, которые по своей природе суть опосредствованные и принимаются за непосредственные и недоказанные не в силу какого-нибудь принципа, а лишь согласно субъективному определению. — И у Эвклида, который искони справедливо признан мастером в этом синтетическом способе познания, под названием аксиомы фигурирует предпосылка о параллельных линиях, которая считалась требующей доказательства и относительно которой делались разные попытки восполнить этот пробел. Некоторые математики думали, что они открыли в некоторых других теоремах такие предпосылки, которые должны были бы быть не приняты непосредственно, а доказаны. Что же касается упомянутой аксиомы о параллельных линиях, то можно относительно этого заметить, что как раз в ней видно правильное чутье Эвклида, точно оценившего как стихию, так и природу своей науки; доказательство этой аксиомы нужно было бы вести, исходя из понятия параллельных линий; но такой способ доказательства так же мало входит в задачу его науки, как и дедукция выставляемых им дефиниций, аксиом и вообще его предмета — самого пространства и ближайших его определений, измерений; так как такую дедукцию можно вести только из понятия, а последнее лежит вне своеобразного характера эвклидовой науки, то указанные дефиниции, аксиомы и т. д.
необходимым образом представляют собой для этой науки некоторые предпосылки, нечто относительно-первое.
Аксиомы, — чтобы сказать по этому поводу несколько слов и о них, — принадлежат к тому же классу. Их обыкновенно несправедливо принимают за абсолютно-первые, как будто они сами по себе не нуждаются низ в каком доказательстве. Если бы это было на самом деле так, то они были бы чистыми тавтологиями, так как только в абстрактном тождестве нет никакой разности и, следовательно, не требуется также и никакого опосредствования. Но если аксиомы представляют собой нечто большее, чем тавтологии, то они суть положения, заимствованные из какой-либо другой науки, так как для той науки, которой они служат в качестве аксиом, они должны быть предпосылками. Они поэтому суть, собственно говоря, теоремы, и притом большей частью из логики (107). Аксиомы геометрии и суть подобного рода леммы (108), логические положения, которые, впрочем, приближаются к тавтологиям вследствие того, что они касаются лишь величины и поэтому качественные различия в них стерты; о главной аксиоме, о чисто количественном умозаключении, речь была выше(109). — Поэтому рассматриваемые сами по себе, аксиомы точно так же нуждаются в доказательстве, как и дефиниции и подразделения, и их не делают теоремами только потому, что они как относительно-первые принимаются для известной точки зрения за предпосылки.
Касательно содержания теоремы следует теперь провести то более детальное различение, что, так как это содержание состоит в некотором соотнесении определенностей реальности понятия, то эти соотношения могут быть либо более или менее неполными и отдельными отношениями предмета, либо же таким отношением, которое охватывает все содержание реальности и выражает его определенное соотношение. Но единство совокупных определенностей содержания равно понятию; предложение, содержащее это единство, само поэтому есть опять-таки дефиниция, но такая дефиниция, которая выражает не только непосредственно воспринятое понятие, но понятие, развернутое в свои определенные, реальные различия, или, иначе говоря, полное существование понятия. И то и другое вместе взятое представляет поэтому идею.
Если более детально сравнить между собой теоремы какой- нибудь синтетической науки и в особенности геометрии, то мы обнаружим следующее различие: одни из теорем этой науки заключают в себе лишь отдельные отношения предмета, другие же — такие отношения, в которых выражена полная определенность предмета. Очень поверхностен тот взгляд, который рассматривает все предложения как равноценные на том основании, что вообще каждое из них содержит, дескать, в себе некоторую истину и что они в формальном ходе изложения, в связи доказательства одинаково существенны. Различие касательно содержания теорем находится в теснейшей связи с самим этим ходом изложения; некоторые дальнейшие замечания об этом ходе изложения послужат к тому, чтобы ближе осветить как указанное различие, так и природу синтетического познания. Прежде всего необходимо отметить следующее: в эвклидовской геометрии, которая должна служить здесь примером как представительница синтетического метода, наиболее
{279}
совершенный образец которого она доставляет, искони являлся предметом прославления порядок расположения теорем, благодаря которому по отношению к каждой теореме те предложения, которые требуются для ее построения и доказательства, всегда уже имеются под рукой как уже доказанные раньше. Это обстоятельство касается формальной последовательности; как ни важна эта последовательность, она все же больше касается внешней целесообразности расположения материала и сама по себе не имеет никакого отношения к существенному различию понятия и идеи, в котором заключается более высокий принцип необходимости поступательного движения. — А именно, дефиниции, с которых начинают в геометрии, берут чувственный предмет как непосредственно данный и определяют его по его ближайшему роду и специфическому (видовому) отличию, которые тоже суть простые, непосредственные определенности понятия— всеобщность и особенность, — отношение между которыми не развертывается дальше. Начальные теоремы сами не могут касаться ничего другого, кроме таких непосредственных определений, как те, которые содержатся в дефинициях; а равно и их взаимная зависимость может ближайшим образом иметь только тот общий характер, что одно определение вообще определено другим. Так, первые теоремы Эвклида о треугольниках касаются лишь совпадения, т. е. вопроса о том, сколько составных частей должны быть определены в треугольнике, чтобы были вообще определены также и остальные составные части того же самого треугольника или, иначе говоря, весь треугольник в целом. Что тут сравниваются друг с другом два треугольника и совпадение полагают в покрытии одного треугольника другим, это окольный путь, в котором нуждается метод, по необходимости долженствующий пользоваться чувственным покрыванием вместо мысли об определимости как таковой. Помимо этого, рассматриваемые сами по себе, эти теоремы сами содержат в себе две части, из которых на одну можно смотреть как на понятие, а на другую как на реальность, как на то, что завершает понятие, доводя его до реальности. А именно, то, что вполне определяет треугольник (например, две стороны и заключенный между ними угол), есть для рассудка уже весь треугольник; для полной определенности последнего ничего больше не требуется; остальные два угла и третья сторона есть избыток реальности над определенностью понятия. Поэтому вот что, собственно говоря, делают эти теоремы: они сводят чувственный треугольник, во всяком случае нуждающийся в трех сторонах и трех углах, к его простейшим условиям; дефиниция лишь вообще упомянула о трех линиях, замыкающих плоскую фигуру и делающих ее треугольником; теорема же впервые точно и ясно указывает определяемость углов через определенность сторон, равно как другие теоремы указывают зависимость других трех составйых частей треугольника от трех остальных частей. — Указание же на полную определенность величины треугольника по его сторонам внутри его самого содержит в себе пифагорова теорема; только она впервые является уравнением сторон треугольника, тогда как предшествующие теоремы (110) доходят лишь вообще до установления определенности его частей по отношению друг к другу, а не до уравнения. Эта теорема есть поэтому совершенная, реальная дефиниция треугольника, а именно, прежде всего прямоугольного треугольника, наиболее простого в своих различиях и потому наиболее правильного. — Этой теоремой Эвклид заканчивает первую книгу, так как она (теорема) и в самом деле представляет собой достигнутую совершенную определенность. Подобным же образом Эвклид, после того как он предварительно свел к единообразному началу (111) обремененные большим неравенством непрямоугольные треугольники, заканчивает свою вторую книгу сведением прямоугольника к квадрату, — уравнением между равным самому себе (квадратом) и(112) неравным внутри себя (прямоугольником); точно так же и гипотенуза, соответствующая прямому углу, т. е.
Читать дальшеИнтервал:
Закладка: