Вернер Гейзенбер - Шаги за горизонт

Тут можно читать онлайн Вернер Гейзенбер - Шаги за горизонт - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Прогресс, год 1987. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вернер Гейзенбер - Шаги за горизонт краткое содержание

Шаги за горизонт - описание и краткое содержание, автор Вернер Гейзенбер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В. Гейзенберг — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.

Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.

Издание рассчитано как на философов, так и на широкий круг ученых-естествоиспытателей.

Шаги за горизонт - читать онлайн бесплатно полную версию (весь текст целиком)

Шаги за горизонт - читать книгу онлайн бесплатно, автор Вернер Гейзенбер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Роль традиции в науке, однако, не ограничивается выбором проблемы, и тут я перехожу ко второй части своего доклада. С наибольшей полнотой действие традиции сказывается в более глубоких слоях научного процесса, где ее не так-то уж легко распознать; и здесь прежде всего следует сказать о научном методе. В научной работе нашего столетия мы следуем, по существу, все тому же методу, который был открыт и разработан Коперником, Галилеем и их последователями в XVI и XVII веках. Временами этот метод истолковывают ошибочно, характеризуя его в противоположность умозрительной науке предшествовавших веков как опытную науку. В действительности Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона. Аристотелевскую дескриптивную науку он заменил платоновской структурной наукой. Выступая в защиту опыта, он имел в виду опыт, просвеченный математическими связями. Галилей, точно так же, как и Коперник, понял, что, отстраняясь от непосредственного опыта, идеализируя этот опыт, мы можем выявлять математические структуры феноменов и тем самым достигать новой простоты, обретая основу для новой ступени понимания. Аристотель в полном соответствии с непосредственными данными опыта установил, например, что легкие тела падают медленнее, чем тяжелые. Галилей заявил, что в пустом пространстве все тела падают с равной скоростью и что их падение можно описать с помощью простых математических законов. В его эпоху падение тел в безвоздушном пространстве с точностью наблюдать было нельзя; однако тезис Галилея вызвал к жизни новые эксперименты. Новый метод стремился не к описанию непосредственно наблюдаемых фактов, а скорее к проектированию экспериментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории.

Для нового научного метода существенны, таким образом, две характерные черты: стремление ставить каждый раз новые и очень точные эксперименты, идеализирующие, изолирующие опыт и тем самым создающие, по существу, новые феномены, и сопоставление этих феноменов с математическими структурами, принимаемыми в качестве законов природы. Прежде чем выяснять, придерживается ли того же самого метода и наша современная наука, нам следовало бы, пожалуй, вкратце выяснить вопрос, что служило Копернику, Галилею и Кеплеру опорой в их доверии к этому новому пути. Результаты исследования Вейцзеккера заставляют нас, как мне кажется, констатировать, что эта основа была прежде всего теологической [85] 77 Weizsäcker К. von. Zum Weltbild der Physik. Stuttgart, 1970; Weizsäcker K. von. Tragweite der Wissenschaft. Schöpfung und Weltenstehung. Stuttgart, 1971. . Галилей говорил, что природа, вторая книга Бога (первая — Библия), написана математическими буквами, и мы должны выучить ее алфавит, если хотим ее читать. Кеплер в своей работе о мировой гармонии еще более прямолинеен; он говорит: Бог создал мир согласно своим творящим идеям. Эти идеи суть те чистые архетипические формы, которые Платон называл идеями, и они постигаются человеком в виде математических соотношений. Человек способен понимать их потому, что он сотворен как духовное подобие божие. Физика есть отражение божественных творящих идей, и потому физика есть служение Богу.

Подобное теологическое обоснование или оправдание физики сейчас нам совершенно несвойственно; но мы по-прежнему следуем все тому же методу в силу его исключительной эффективности. Секрет его успеха заключается в возможности повторения экспериментов. Все могут в конечном счете прийти к единому мнению относительно получаемых результатов, поскольку нам известно, что эксперименты, проводимые в строго одинаковых условиях, действительно ведут к одинаковым результатам. Что дело должно обстоять именно таким образом, вовсе не само собой разумеется. Для этого необходимо, чтобы все природные процессы строго подчинялись каузальной зависимости, причинно-следственному порядку. И успешное применение данного вида причинности привело к тому, что с течением времени он был принят в качестве одного из основополагающих принципов науки. Философ Кант указал, что каузальность в этом смысле есть не эмпирический закон, а принадлежность нашего научного метода; она — предпосылка того рода науки, который возник в XVI веке и с тех пор непрерывно развивался.

Из этой господствующей в науке установки вытекает тот постулат, что мы исследуем природу такой, какова она «действительно есть». Мы начинаем с того, что вырабатываем представление о мире, существующем в пространстве и времени и подчиняющемся своим природным законам независимо от наблюдающего субъекта. Поэтому при наблюдении феноменов мы тщательно добиваемся исключения какого бы то ни было влияния со стороны наблюдателя. Ведь когда мы конструируем эксперимент и вызываем к жизни новые феномены, мы уверены, что эти новые феномены на самом деле не нами созданы, что они реально имеют место в природе без нашего вмешательства, а в созданных нами экспериментальных условиях мы лишь изолировали их в целях исследования. Во всех этих отношениях мы пока еще доверчиво следуем традиции, восходящей ко временам Коперника и Галилея.

Но имеем ли мы, собственно, право ей следовать — перед лицом хорошо известных гносеологических проблем квантовой теории? На больших ускорителях мы исследуем, к примеру, столкновение между элементарными частицами и верим, что даже если бы мы не построили эти ускорители, подобные явления все равно происходили бы в земной атмосфере под воздействием космического излучения. Однако что приходит из мирового пространства — волны или частицы — и что они вызовут, интерференционную картину или след? Что в действительности происходит, когда нет наблюдателя, и знаем ли мы, что в данной связи означает слово «действительно»? Это трудные вопросы, и мы видим, что традиция может завести нас в тупик.

Обычно считается, что наша наука эмпирическая и что мы вывели свои понятия и свои математические формулы из опытных данных. Если бы это была безоговорочная истина, мы могли бы, вступая в неисследованную область, вводить только величины, допускающие прямое наблюдение, и устанавливать законы природы с помощью одних лишь таких величин. В молодости я думал, что Эйнштейн в своей теории относительно строго следовал такой философии. Я попробовал соответственно сделать нечто аналогичное в квантовой теории, введя матричное исчисление. Но когда позднее я обсуждал свои проблемы с Эйнштейном, он возразил мне: «Моя философия, возможно, когда-то и была такой, но все равно это чушь. Никогда не удастся построить ни одну теорию на одних только наблюдаемых величинах. От теории зависит, что поддается наблюдению» [86] 78 Ср. наст, изд., с. 83. См. также: Heisenberg W. Der Teil und das Ganze. Gespräche im Umkreis der Atomphysik. München, 1976. S. 80. . Этим он хотел подчеркнуть, что от непосредственного наблюдения — будь то черной линии на фотографической пластинке, будь то разряда в счетчике Гейгера или подобных вещей — мы можем перейти к интересующим нас явлениям только в опоре на теорию и теоретические понятия. Невозможно отделить процесс эмпирического наблюдения от математической структуры с ее величинами. Соотношения неопределенностей явились позднее очевиднейшим подтверждением тезиса Эйнштейна.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вернер Гейзенбер читать все книги автора по порядку

Вернер Гейзенбер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Шаги за горизонт отзывы


Отзывы читателей о книге Шаги за горизонт, автор: Вернер Гейзенбер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x