Вернер Гейзенбер - Шаги за горизонт

Тут можно читать онлайн Вернер Гейзенбер - Шаги за горизонт - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Прогресс, год 1987. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Вернер Гейзенбер - Шаги за горизонт краткое содержание

Шаги за горизонт - описание и краткое содержание, автор Вернер Гейзенбер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В. Гейзенберг — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.

Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.

Издание рассчитано как на философов, так и на широкий круг ученых-естествоиспытателей.

Шаги за горизонт - читать онлайн бесплатно полную версию (весь текст целиком)

Шаги за горизонт - читать книгу онлайн бесплатно, автор Вернер Гейзенбер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Абстракция в современной науке [87] 79 В основе статьи лежит текст лекции, прочитанной в Бонне в 1960 г. Первая публикация: Heisenberg W. Die Abstraction in der modernen Naturwissenschaft//Reden und Gedenkworte. Heidelberg, 1962, Bd. 4, S. 141–164.

Когда современную науку сравнивают с наукой более ранних времен, часто выдвигается следующее утверждение: наука в процессе своего развития становилась все более и более абстрактной, а в наше время во многих отраслях она достигла прямо-таки пугающей степени абстрактности, что лишь отчасти компенсируется теми огромными практическими успехами, которыми отмечено техническое применение науки. Мне не хотелось бы здесь углубляться в проблему ценности, которая нередко ставится в этой связи. Не стану поэтому гадать, в самом ли деле наука прежних времен доставляла больше радости, поскольку любовное погружение в детали природных явлений позволяло ей вдохнуть жизнь в изучаемые зависимости природы и сделать их зримыми, или же, напротив, невероятное развитие технических возможностей, к которому привели современные исследования, неопровержимо продемонстрировало превосходство именно нашей концепции естественных наук. Тем самым проблему ценности мы с самого начала оставим в стороне.

Вместо этого мы попытаемся детально разобрать, как шел процесс абстрагирования по мере развития самок науки. Проследим, насколько это возможно в рамках, краткого исторического анализа, что же в действительности происходит, когда наука, явно повинуясь своего рода инстинкту, восходит от одного уровня абстрактности к другому, более высокому, и ради каких познавательных ценностей вообще проделывается этот трудный путь восхождения. Мы обнаружим, что в разных естественнонаучных дисциплинах происходят при этом весьма сходные процессы, сравнение которых позволяет лучше их понять. Когда биолог прослеживает метаболизм и процессы воспроизводства живых организмов вплоть до химических реакций; когда химик заменяет качественное описание веществ более или менее сложной формулой их состава; когда, наконец, физик выражает законы природы в математических уравнениях — повсюду мы сталкиваемся с одним видом развития, прототип которого можно, по-видимому, отчетливее всего выявить в развитии самой математики. Проблема в том, почему неизбежным оказывается именно такой тип развития.

Начнем с такого вопроса: что такое абстракция и какую роль она играет в понятийном мышлении? Ответ можно сформулировать примерно так: абстракция означает возможность рассмотреть предмет или группу предметов под одним углом зрения, отвлекаясь от всех других свойств рассматриваемого предмета. Сущность абстракции составляет выделение одной особенности и противопоставление ее как особо важной всем прочим. Легко убедиться, что образование понятий происходит в ходе формирования такого рода абстракции, ибо оно предполагает способность распознавать сходство. Поскольку в наблюдаемых явлениях практически никогда не встречается полной тождественности, сходство возникает только в процессе абстрагирования, когда выделяется какая-то одна особенность и устраняются все другие. Чтобы быть в состоянии сформировать, скажем, понятие «дерево», нужно сначала сообразить, что у березы и ели имеются некие общие черты, которые можно выделить посредством абстрагирования и представить обособленно.

Отыскание общих признаков может при известных обстоятельствах оказаться весьма важным познавательным актом. Уже на первых этапах своей истории человек должен был, например, осознать, что сравнение, скажем, трех коров с тремя яблоками указывает на их общую характеристику, а именно ту, которая выражается словом «три». Формирование понятия числа составляет решающий шаг, выводящий человека из той сферы мира, которая дана ему непосредственно в ощущениях, и погружающий его в сплетение рационально постигаемых структур мышления. Утверждение, что два ореха и два ореха составляют вместе четыре ореха, остается в силе, даже если мы заменим слово «орех» словом «хлеб» или названием какого угодно другого предмета. Его, следовательно, можно обобщить и облечь в абстрактную форму: два и два — четыре. Это было важным открытием. По-видимому, уже достаточно рано люди осознали присущую понятию числа особую способность упорядочивать, а это привело к тому, что некоторые числа стали толковать символически. С точки же зрения современной математики отдельные числа не так важны, как сама операция счета. Именно эта операция порождает непрерывный ряд натуральных чисел и внутренне предполагает все соотношения, изучаемые, например, в теории чисел. Освоив счет, люди сделали решающий шаг в сферу абстракции, был открыт путь, ведущий к математике и математическому естествознанию.

Теперь мы уже в состоянии перейти к изучению феномена, с которым мы постоянно будем встречаться в дальнейшем на разных уровнях абстрактности в математике или в естественных науках Нового времени. По отношению к процессу развития абстрактного мышления в науке его можно было бы назвать чем-то вроде прафеномена, [88] 80 См. статью «Картина природы у Гёте и научно-технический мир» — наст, изд., с. 306–323. — хотя Гёте, разумеется, не использовал бы это изобретенное им выражение в подобном контексте. Феномен этот можно назвать, положим, развертыванием абстрактных структур. Понятия, первоначально полученные путем абстрагирования от конкретного опыта, обретают собственную жизнь. Они оказываются более содержательными и продуктивными, чем можно было ожидать поначалу. В последующем развитии они обнаруживают собственные конструктивные возможности: они способствуют построению новых форм и понятий, позволяют установить связи между ними и могут быть в известных пределах применимы в наших попытках понять мир явлений.

Например, из понятия счета и связанных с ним простых операций вычисления развилась в дальнейшем — отчасти в Античности, отчасти в Новое время — сложная арифметика и теория чисел. Эти науки открыли, по сути дела, только то, что с самого начала было заложено в понятии числа. Далее, число и развитое на его основе учение о числовых отношениях позволили измерять и сравнивать отрезки. Отсюда возникла наука геометрии, которая в концептуальном отношении выходит за пределы учения о числе. Уже попытка пифагорейцев положить теорию чисел в основание геометрии натолкнулась на трудности, связанные с отношением несоизмеримых отрезков. В результате они должны были расширить совокупность известных чисел, они были в какой-то мере вынуждены изобрести иррациональное число. Двигаясь дальше, греки пришли к понятию континуума и к знаменитым парадоксам, которые впоследствии были изучены философом Зеноном. Мы, впрочем, не собираемся здесь углубляться в трудности, с которыми было связано развитие математики, нам важно просто показать, какое богатство форм заложено в понятии числа и может быть в нем раскрыто.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Вернер Гейзенбер читать все книги автора по порядку

Вернер Гейзенбер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Шаги за горизонт отзывы


Отзывы читателей о книге Шаги за горизонт, автор: Вернер Гейзенбер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x