Георг Вильгельм Фридрих Гегель - Учение о понятии

Тут можно читать онлайн Георг Вильгельм Фридрих Гегель - Учение о понятии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Типография М.М. Стасюлевича, год 1916. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Георг Вильгельм Фридрих Гегель - Учение о понятии краткое содержание

Учение о понятии - описание и краткое содержание, автор Георг Вильгельм Фридрих Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)


Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:

1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);

1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).


Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:

1916 г.: Предисловие к русскому переводу, стр. VII – XXII;

1929 г.: От издательства, стр. VII – XI.


В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.


Особенности электронного издания:

1. Состоит из трех файлов – по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219 – 222 бумажного издания).

2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.

3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.

4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).

5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).

6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).

7. Греческие слова и выражения приводятся без диакритических знаков.

8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).

Учение о понятии - читать онлайн бесплатно полную версию (весь текст целиком)

Учение о понятии - читать книгу онлайн бесплатно, автор Георг Вильгельм Фридрих Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как известно, арифметика и более общие науки о дискретной величине носят по преимуществу название аналитической науки и анализа . Способ их познания действительно наиболее имманентно аналитичен, и надлежит посмотреть вкратце, на чем это основывается. Прочее аналитическое познание начинает с некоторой конкретной материи, имеющей в себе слу {171}чайное многообразие; все различение содержания и движение вперед к дальнейшему содержанию зависит от него. Напротив, арифметическая и алгебраическая материя есть совершенно отвлеченно и неопределенно нечто уже сделанное, в коем погашено всякое своеобразие отношения, и для коего тем самым всякое определение и связь суть нечто внешнее. Таков принцип дискретной величины, одно . Из этого безотносительного атома может быть образовано некоторое множество , он может быть внешним образом определен и соединен в некоторое определенное число, но такое размножение и ограничение есть пустое движение вперед и действие определения, остающегося при том же принципе отвлеченного одного. Таким образом числа сочетаются и отделяются далее, это зависит исключительно от совершаемого познающим положения. Величина есть вообще та категория, внутри коей совершаются эти определения; что представляет собою ставшею безразличною определенность, так что предмет не имеет никакой определенности, которая была бы ему имманентна, т.е. была бы дана познанию. Поскольку познание ближайшим образом установило в себе случайное различие чисел, они и образуют материю для дальнейшей обработки и разнообразных отношений. Такие отношения, их изобретение и обработка, правда, кажутся неимманентными аналитическому познанию, но случайными и данными ему, равно как эти отношения и относящиеся к ним действия обыкновенно излагаются последовательно , как различные, без указания какой-либо внутренней связи. Тем не менее легко указать тут руководящий принцип; и именно он состоит в имманентности аналитического тожества, которое является в различном, как равенство ; чтобы дать пример из основных действий, укажу, что сложение есть сочетание случайно совершенно неравных чисел, умножение напротив – равных , причем за сим следует еще отношение равенства определенного числа и единицы и отношение степенное.

А так как определенность предмета и отношений (арифметики) есть положенная , то дальнейшие действия над ними совершенно аналитичны, и этой аналитической науке свойственны, поэтому, не столько теоремы , сколько задачи . Аналитическая теорема содержит в себе задачу, уже как решенную для себя, и совершенно внешнее различение, привходящее к обеим сторонам, которые полагаются им равными, тем самым несущественно, так что такая теорема была бы лишь некоторым тривиальным тожеством. Кант, правда, признал предложение 5+7=12 за синтетическое , так как одна сторона равенства изображает то же самое в форме множества, 5 и 7, а другая в форме одного, 12. Но если только аналитическое должно означать не совершенно отвлеченно – тожественное и тожесловное 12=12, и если в нем вообще должно быть некоторое движение вперед, то между этими двумя сторонами должно быть какое-либо различение, но только такое, которое основывается не на качестве, не на определенности рефлексии и тем более не на определенности понятия. 5+7 и 12 суть совершенно одно и то же содержание; первая сторона равенства также выражает требование , чтобы 5 и 7 были сочетаны в одном выражении, т.е. чтобы, как пять есть {172}нечто сосчитанное, остановка на коем была совершенно произвольна и вполне допускает дальнейший счет, то таким же образом должно считать далее с тем определением, чтобы число прибавленных одних было семь. 12 есть, стало быть, результат 5 и 7 и некоторого действия, которое, положенное уже по своей природе, есть действие совершенно внешнее, чуждое мысли, и потому могущее быть исполненным даже машиною. Здесь нет ни малейшего перехода в какое-либо другое ; это простое продолжение, т.е. повторение того же действия, через которое произошли 5 и 7.

Доказательство такой теоремы – его требовал он, если бы это было синтетическое предложение – состояло бы лишь в действии определенного через 7 дальнейшего счета, начиная от 5-ти, и в познании совпадения результата этого дальнейшего счета с тем, чтó вообще называется 12-ю, и чтó опять-таки есть не что иное, как именно этот определенный дальнейший счет. Поэтому вместо формы теоремы избирается сейчас же форма задачи , требование действия, т.е. высказывается лишь одна сторона уравнения, долженствовавшего будто бы составить теорему, другая сторона коего должна быть найдена. Задача имеет содержание и приводит к определенному действию, которое должно быть произведено над этим содержанием. Это действие не ограничено никакою резко очерченною, обладающею специфическими отношениями материею, но есть внешнее, субъективное действие, определения которого материя, в которой они положены, принимает безразлично. Все различение поставленных в задаче условий и результата ее решения состоит лишь в том, что в этом результате действительно определенным образом соединено или разделено то, что дано в условиях.

Поэтому оказывается в высшей степени излишним применять здесь форму геометрического метода, относящегося к синтетическим предложениям, и кроме решения задачи присоединять к нему еще какое-либо доказательство . Последним может быть высказано лишь то тожесловие, что решение верно, так как действие было произведено так, как было задано. Если задана задача, то должно сложить несколько цифр; таково решение; их складывают; доказательство указывает, что решение верно, так как вследствие того, что было задано сложить, было произведено сложение. Если задача содержит в себе более сложные определения и действия, напр. если нужно перемножить десятичные дроби, а решение не дает ничего, кроме механического приема, то, правда, требуется доказательство; но последнее состоит лишь в анализе этих определений и действия, из которых само собою вытекает решение. Через это отделение решения , как механического приема, от доказательства , как припоминания природы подлежащего действию предмета и самого действия, именно и утрачивается то преимущество аналитической задачи, по которому построение непосредственно выводится из задачи и потому может быть изображено, как понятное для рассудка в себе и для себя; а с другой стороны, построению явно сообщается некоторый недостаток, свойственный синтетическому методу. В высшем анализе, в коем выступают вместе с отношениями степеней, главным образом, каче {173}ственные и зависящие от определенностей понятий отношения дискретных величин, задачи и теоремы, правда, содержат в себе синтетические определения; там должны быть принимаемы за средние термины другие определения и отношения, чем те, которые непосредственно даны задачами и теоремами. Сверх того и эти вспомогательные определения должны быть таковы, чтобы быть обоснованными через соображение и развитие одной стороны задачи или теоремы; синтетический вид возникает лишь оттого, что в задаче или теореме эта сторона сама уже не упоминается. Напр., задача – найти сумму степеней корней какого-либо уравнения решается через рассмотрение и затем соединение функций, служащих в уравнении коэффициентами корней. Здесь вспомогательное определение функций коэффициентов и их соединений не выражено в самой задаче; в прочих же отношениях самое решение совершенно аналитично. Так решение уравнения x m –1=0 при помощи синуса, а также имманентное, как известно, найденное Гауссом алгебраическое решение через рассмотрение остатка от деления x m -1–1 на m и т. наз. первоначальных корней – одно из важнейших расширений анализа нового времени, есть синтетическое решение, так как вспомогательные определения, синус и рассмотрение остатков, не суть определения самой задачи.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Вильгельм Фридрих Гегель читать все книги автора по порядку

Георг Вильгельм Фридрих Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учение о понятии отзывы


Отзывы читателей о книге Учение о понятии, автор: Георг Вильгельм Фридрих Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x