Георг Вильгельм Фридрих Гегель - Учение о бытии
- Название:Учение о бытии
- Автор:
- Жанр:
- Издательство:Типография М.М. Стасюлевича
- Год:1916
- Город:Петроград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Обычное определение математического бесконечного состоит в том, что оно есть величина, за которой — если она определяется, как бесконечно большая — нет большей величины или — если она определяется, как бесконечно малая — нет меньшей величины , или которая в первом случае более, а во втором — менее какой бы то ни было любой величины. Это определение, правда, не выражает собою истинного понятия, но содержит в себе, как уже было замечено, то же самое противоречие, которое свойственно бесконечному прогрессу; но посмотрим, что в нем содержится в себе . Величина определяется в математике, как то, что может быть увеличиваемо или уменьшаемо, вообще как безразличная граница. Следовательно, поскольку бесконечно большое или бесконечно малое таково, что оно уже не может быть увеличиваемо или уменьшаемо, оно в действительности уже не есть определенное количество (Quantum).
Это есть вывод необходимый и непосредственный. Но та рефлексия, согласно которой определенное количество — а я разумею в этом примечании под определенным количеством вообще то, что оно есть, конечное количество — снято, не должна иметь места и представляет для обычного понимания затруднение, так как определенное количество, поскольку оно бесконечно, должно быть мыслимо, как снятое, как такое, которое не есть определенное количество, и количественная определенность которого, однако, сохраняется .
Если обратиться к тому, как обсуждает это определение Кант [22] В примечании к тезису первой космологической антиномии в Критике чистого разума.
, то оказывается, что он не находит его согласующимся с тем, что понимается под бесконечным целым . «По обычному понятию такая величина бесконечна, более которой (т. е. более содержащегося в ней множества данных единиц) не может быть никакая другая величина; но никакое множество не может быть наибольшим, так как к нему всегда можно прибавить одну или более единиц. В представлении же бесконечного целого мы не представляем себе, как оно велико , следовательно, его понятие не {160}есть понятие максимума (или минимума), а выражаем этим представлением лишь его отношение к произвольно взятой единице , относительно которой это целое более какого бы то ни было числа. Смотря по тому, более или менее эта единица, и бесконечное более или менее; но бесконечность, поскольку она состоит в отношении к этой данной единице, остается всегда одною и тою же, хотя конечно абсолютная величина целого тем самым совсем не узнается».
Кант порицает признание бесконечного целого за некоторый максимум, за законченное множество данных единиц. Максимум или минимум, как таковой, является всегда определенным количеством, множеством. Таким представлением не может быть отклонен вывод Канта, приводящий к большему или меньшему бесконечному. Вообще поскольку бесконечное представляется как определенное количество, для него сохраняет значение различие большего или меньшего. Но эта критика не касается понятия истинного математического бесконечного, бесконечной разности, так как последняя уже не есть конечное определенное количество.
Напротив, понятие о бесконечности у Канта, называемое им истинным трансцендентальным, состоит в том, что «последовательный синтез единиц при измерении определенного количества никогда не может быть закончен ». Предположено вообще некоторое определенное количество, как данное; оно через синтезирование единиц должно быть сделано числом, определенно заданным определенным количеством, но это синтезирование никогда не может быть закончено. Здесь очевидно излагается не что иное, как прогресс в бесконечность, представляемый лишь трансцендентально , т. е. в сущности субъективно и психологически. Правда, в себе определенное количество должно быть закончено, но трансцендентально, а именно в субъекте, приводящем его в отношение к некоторой единице, происходит лишь такое определение определенного количества, которое (определение) не закончено и применимо лишь к потустороннему. Поэтому здесь вообще получается остановка на противоречии, заканчивающемся в понятии величины, но распределенном между объектом и субъектом так, что на долю первого приходится ограниченность, а на долю второго выход за его определенность, ложная бесконечность.
Напротив, уже ранее было сказано, что определение математического бесконечного и именно то, которое употребляется в высшем анализе, соответствует понятию истинно бесконечного; только для объединения обоих определений должно быть предпринято подробное развитие математического понятия. Что касается, во-первых, истинно бесконечного определенного количества, то оно было определено, как бесконечное в нем самом ; оно таково, поскольку, как было выяснено, конечное определенное количество или определенное количество вообще и его потустороннее, ложное бесконечное, оба должны быть одинаково сняты. Снятое определенное количество тем самым возвращено к своей простоте и к отношению к себе самому, но не только как к экстенсивному, так как оно перешло в интенсивное опре {161}деленное количество, имеющее определенность лишь в себе при внешней множественности, относительно которой оно, однако, безразлично и от которой оно должно отличаться. Бесконечное определенное количество содержит, напротив, во-первых, внешность и, во-вторых, ее отрицание в нем самом; таким образом оно есть уже не некоторое определенное количество, не определенность величины, имеющая существование , как определенное количество , но нечто простое и потому лишь момент ; оно есть определенность величины в качественной форме; его бесконечность состоит в том, чтобы быть качественною определенностью . Поэтому, как момент, оно состоит в существенном единстве со своим другим, будучи лишь определено этим своим другим, т. е. оно имеет значение лишь в связи с находящимся к нему в отношении. Вне этого отношения оно нуль ; ибо, так как определенное количество, как таковое, безразлично к отношению , то в нем должно быть непосредственное покоящееся определение; в отношении , оно, как только момент, не есть нечто безразличное для себя; в бесконечности, как бытии для себя , поскольку оно вместе с тем есть некоторая количественная определенность, оно есть лишь для одного .
Понятие бесконечного, как оно изложено здесь отвлеченно, окажется лежащим в основе математического бесконечного, и само станет отчетливее, когда мы рассмотрим различные ступени выражения определенного количества, как момента отношения , начиная с низшей, на которой оно есть еще вместе с тем определенное количество, как таковое, до высшей, на которой оно приобретает значение и выражение собственно бесконечной величины.
Читать дальшеИнтервал:
Закладка: