Георг Вильгельм Фридрих Гегель - Учение о бытии

Тут можно читать онлайн Георг Вильгельм Фридрих Гегель - Учение о бытии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Типография М.М. Стасюлевича, год 1916. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание

Учение о бытии - описание и краткое содержание, автор Георг Вильгельм Фридрих Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)


Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:

1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);

1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).


Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:

1916 г.: Предисловие к русскому переводу, стр. VII–XXII;

1929 г.: От издательства, стр. VII–XI.


В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.


Особенности электронного издания:

1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).

2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.

3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.

4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).

5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).

6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).

7. Греческие слова и выражения приводятся без диакритических знаков.

8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).

Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)

Учение о бытии - читать книгу онлайн бесплатно, автор Георг Вильгельм Фридрих Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Несоизмеримость, имеющая место в примере Спинозы, заключает в себе вообще криволинейные функции и приводит к тому бесконечному, которое употребляется математикою при этих функциях, вообще при функциях переменных величин ; последнее есть именно то истинное математическое , качественное бесконечное, о котором мыслил Спиноза. Это определение должно быть здесь рассмотрено ближе.

Что касается, во-первых, признаваемой столь важною категории переменности, под которую подводятся входящие в эти функции величины, то они прежде всего должны быть переменными не в том смысле, как в дроби 2/7 оба числа 2 и 7, поскольку вместо них можно поставить также 4 и 14, 6 и 21 и т. д. другие числа до бесконечности без изменения величины дроби. Еще с бóльшим правом в дроби a / b можно вместо а и b поставить любые числа без изменения того, что должно выражать собою a / b . В том смысле, что и вместо х и у в какой-либо функции можно вставить бесконечное, т. е. неисчерпаемое, множество чисел, а и b суть столь же переменные величины, как х и у . Выражение переменные величины поэтому весьма неопределенно и выбрано неудачно для определений величин, {167}имеющих интерес и подвергающихся действиям совсем в иных видах , чем обусловливаемых только их переменностью.

Для того, чтобы выяснить, в чем состоит истинное определение моментов некоторой функции, имеющей интерес для высшего анализа, мы снова должны обозреть указанные выше ступени (развития понятий). В дробях 2/7 или a / b числа 2 и 7, каждое для себя, суть определенные количества, и отношение для них несущественно; а и b также представляют собою такие определенные количества, которые остаются тем, что они суть, и вне отношения. Далее 2/7 и a / b суть постоянные определенные количества, показатели; отношение составляет число, единица которого есть знаменатель, а определенное число — числитель, или обратно; если вместо 2 и 7 вставить 4 и 14, то отношение, как определенное количество, остается тем же самым. Но это существенно изменяется — например в функции y 2/ x = p ; в ней х и у , правда, имеют значение определенных количеств; но определенный показатель присущ отношению не х и у , а только х и у 2. Поэтому, как члены отношения, х и у, во-первых , не суть определенные количества, а во-вторых , их отношение не есть постоянное определенное количество (и его не мнят таким же, как при а и b ), не постоянный показатель, а, как определенное количество , оно переменно . Это зависит только от того, что х находится в отношении не к у , а к квадрату у . Отношение некоторой величины к степени есть не определенное количество , а по существу качественное отношение; степенное отношение есть такое положение , которое должно считаться основным определением . В уравнении прямой линии у = ах выражение у / x = а есть обыкновенная дробь и показатель; эта функция есть поэтому лишь формально функция переменных величин, иначе сказать х и у здесь то же самое, что а и b в a / b , они не имеют того определения, под которым их рассматривает дифференциальное и интегральное исчисление. Вследствие особенной природы переменных величин с этой точки зрения было бы целесообразно ввести для них также как особое наименование, так и особое обозначение , отличное от обычных неизвестных величин в каждом конечном определенном, так и неопределенном уравнении, — для указания их существенного отличия от таких просто неизвестных величин, которые в себе суть вполне определенные количества или определенная совокупность определенных количеств. Равным образом является лишь недостатком сознания своеобразия того, что составляет интерес высшего анализа, и чем вызвана потребность и изобретение дифференциального исчисления, включение функций первой степени, каково уравнение прямой линии, в составе этого исчисления; придание последнему такого формального характера представляет собою еще и то неудобство, что признается возможным достижение самого по себе правильного требова {168}ния обобщения метода при опущении той специфической определенности, которая обусловливает потребность в нем, так что все сводится к тому, как будто дело идет в этой области лишь о переменных величинах вообще . В рассмотрении и в изложении этих предметов было бы, конечно, гораздо менее формализма, если бы было принято во внимание, что здесь дело идет не о переменных величинах, как таковых, а о степенных определениях .

Но есть еще дальнейшая ступень, на которой математическое бесконечное выступает в своем своеобразии. В уравнении, в котором х и у положены, как определенные ближайшим образом степенным отношением, х и у , как таковые, должны еще означать определенные количества; между тем это значение совершенно утрачивается в так называемых бесконечно малых разностях; dx, dy уже не суть определенные количества и не должны обозначать их, но имеют значение лишь в своем отношении, сохраняют смысл, лишь как моменты . Они уже не есть нечто , если принимать нечто за определенное количество, не суть конечные разности; но они также не суть и ничто , неопределенный нуль. Вне своего отношения они суть чистые нули, но должны быть принимаемы за моменты отношения, за определения дифференциального коэффициента dx / dy .

В этом понятии бесконечного определенное количество завершается в действительности в качественное существование; оно полагается, как истинно бесконечное; оно снимается, не как то или иное определенное количество, но как количество вообще. Но при этом сохраняется количественная определенность , как элемент определенных количеств, как принцип , или, как было также сказано, в ее первом понятии .

Против этого понятия и направлено все то нападение, которому подвергнулось основное определение математики этого бесконечного, дифференциального и интегрального исчисления. Неправильные представления математиков сами послужили поводами к тому, что оно не было признано, в особенности же вина падает тут на неспособность оправдания этого предмета, как понятия . Между тем, как уже было упомянуто выше, математика не может тут обойти понятия; ибо, как математика бесконечного, она не ограничивается конечною определенностью своих предметов, как например поступает чистая математика, когда рассматривает пространство и время их определения и приводит их в соотношения лишь со стороны их конечности; но она приводит принятое ранее и рассмотренное ею определение в тожество с противоположным ему , превращая, например, кривую линию в прямую, круг в многоугольник и т. п. Поэтому действия, к которым она позволяет себе прибегать в дифференциальном и интегральном исчислении, по их природе совершенно противоречат конечным определениям и их отношениям, и находят, стало быть, свое оправдание лишь в понятии .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Вильгельм Фридрих Гегель читать все книги автора по порядку

Георг Вильгельм Фридрих Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учение о бытии отзывы


Отзывы читателей о книге Учение о бытии, автор: Георг Вильгельм Фридрих Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x