Георг Вильгельм Фридрих Гегель - Учение о бытии
- Название:Учение о бытии
- Автор:
- Жанр:
- Издательство:Типография М.М. Стасюлевича
- Год:1916
- Город:Петроград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Я воздерживаюсь от дальнейших ссылок, так как сказанное в достаточной степени обнаруживает, что они, без сомнения, имеют дело с истинным понятием бесконечного, но что это понятие не выделено и не понято в своей определенности. Поэтому, когда совершается переход к самим действиям, то нельзя ожидать, чтобы в них проявлялось истинное определение понятия; напротив, в нем возвращаются к конечной определенности количества, и действие не может освободиться от представления лишь относительно малого . Исчисление приводит к необходимости подвести так называемые бесконечные величины под обычные арифметические действия сло {174}жения и т. п., применяемые к природе конечных величин, и тем самым хотя бы на мгновение признать первые величины конечными и обращаться с первыми, как со вторыми. Требовалось бы оправдать исчисление в том, что оно, с одной стороны, понижает бесконечные величины в сферу конечности и обращается с ними, как с приращениями или разностями, а с другой стороны, применив к ним формы и законы конечных величин, пренебрегает ими, как определенными количествами.
Я привожу еще наиболее существенное о попытках геометров устранить эти затруднения.
Более старые аналитики не затрудняли себя по этому доводу большими сомнениями; но старания более новых были направлены главным образом к тому, чтобы привести исчисление бесконечных к очевидности собственно геометрического метода и достигнуть в математике строгости доказательств древних (выражение Лагранжа ). Но так как принцип анализа бесконечных выше, чем принцип математики конечных величин, то первый сам собою немедленно должен был отказаться от этого рода очевидности ; подобно тому, как философия не может притязать на такую отчетливость, какую имеют науки о чувственном, напр., естествознание, или как еда или питье считаются за более рассудительные занятия, чем мышление и понимание. Поэтому можно говорить лишь о старании достигнуть строгости доказательств древних.
Многие пытались совершенно обойтись без понятия бесконечного и достигнуть без него тех же результатов, какие достигаются при его употреблении. Лагранж говорит, например, о методе, изобретенном Ланденом , и объясняет, что этот метод совершенно аналитический и не прибегает к бесконечно малым разностям, но сначала вводит различные значения переменных величин, а потом приравнивает их между собою. Впрочем, Лагранж заявляет, что при этом утрачиваются преимущества, свойственные дифференциальному исчислению, — простота метода и легкость действий. Этому приему отчасти соответствует тот, от которого исходит Декарт в своем методе касательных, о коем будет еще подробнее сказано далее. Здесь можно заметить, — что и теперь уже в общем ясно, — что вообще метод, состоящий в том, чтобы придавать различные значения переменным величинам и затем приравнивать их одну другой, принадлежит другому кругу математических соображений, чем метод самого дифференциального исчисление, и что первым не обращается внимания на подлежащую далее ближайшему рассмотрению особенность того простого отношения, к которому приводится его истинно конкретное определение, — именно отношения производной функции к первоначальной.
Старейшие из новых, напр., Ферма, Барроу и др., которые впервые воспользовались применением бесконечно малых к тому, что впоследствии выработалось в дифференциальное и интегральное исчисление, затем также Лейбниц и др., равным образом Эйлер , постоянно открыто признавали возможным пренебрегать произведениями бесконечно малых разностей так же, {175}как и наивысшими степенями, лишь потому, что они могут считаться исчезающими относительно низших степеней. У всех них это является единственным основоположением , именно определением того, что такое дифференциальные произведения или степени, ибо к этому сводится все теоретическое учение . Прочее есть отчасти механизм действий, отчасти приложение, к которым однако, как будет показано далее, в действительности и сводится главный или, правильнее сказать, единственный интерес. В настоящее время достаточно провести лишь элементарное положение, что по тому же основанию незначительности , как главного положения, касающегося кривых, признается, что элементы кривых, именно приращения абсциссы и ординаты, имеют между собой то же отношение , как подкасательная и ордината ; с целью получить подобные треугольники дуга, составляющая с обоими приращениями третью сторону треугольника, правильно названного перед тем характеристическим треугольником, принимается за прямую линию, за часть касательной, и потому одно из приращений за доходящее до касательной. Этими допущениями определения, с одной стороны, возвышаются над свойствами конечных величин; но с другой стороны к признаваемым за бесконечные моментам применяется прием, правомерный лишь относительно конечных величин, при котором мы не имеем права ничем пренебрегать по причине незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.
Здесь нужно указать на замечательный прием Ньютона (Prin. math. phil. nat. lib. II lemma II после propos VII); он изобрел остроумный фокус (Kunststück) для устранения арифметически неправильного пренебрежения произведениями бесконечно малых разностей и высшими их порядками при нахождении дифференциалов. Он находит дифференциал произведения — из которого легко потом вывести дифференциалы частного, степени и т. п. — следующим путем. Произведение х и у , если уменьшить каждый множитель наполовину его бесконечно малой разности, есть ху — xdy /2– ydx /2+ dxdy /4, если же увеличить его настолько же, то произведение будет ху + xdy /2+ ydx /2+ dxdy /4. Если от этого произведения отнять первое, то получится разность ydx + xdy , которая есть приращение на целые dx и dy , так как на эту величину различаются оба произведения; следовательно это дифференциал ху . Как видно, при этом сам собою отпадает член, представлявший главное затруднение, произведение обеих бесконечно малых разностей dxdy . Но несмотря на имя Ньютона , следует сказать, что это, хотя и весьма элементарное, действие неверно.
Неверно, будто ( x + dx /2)( у + dy /2) — ( х — dx /2)( у — dy /2) = ( х + dx )( y + dy ) — ху [24] Первая часть этого равенства есть xdy + ydx , а вторая xdy + ydx + dxdy , т. е. для того, чтобы было равенство, все же требуется пренебречь членом dxdy , между тем как по доказательству Ньютона он должен сам собою отпасть. — Прим. переводч .
. Лишь потребность, при важности исчисления флюксий, {176}обосновать его могла побудить такого математика, как Ньютон, впасть в заблуждение подобного доказательства.
Интервал:
Закладка: