Георг Вильгельм Фридрих Гегель - Учение о бытии
- Название:Учение о бытии
- Автор:
- Жанр:
- Издательство:Типография М.М. Стасюлевича
- Год:1916
- Город:Петроград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
А именно, бесконечный ряд содержит в себе ложную бесконечность потому, что то, что должно быть выражено посредством ряда, остается долженствованием ; и то, что он выражает, причастно некоторой не исчезающей потусторонности и отличается от того, что должно быть выражено. Он бесконечен не по своим членам, которые положены, но потому что они не полны, потому что то другое, что им существенно принадлежит, находится вне их; то, что есть внутри его, сколько бы ни было в нем положено членов, есть лишь конечное в собственном значении этого слова, поло {164}жено, как конечное, т. е. как такое, которое не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммою такого ряда, не имеет этого недостатка; ему вполне принадлежит то значение, которого ряд только ищет; потустороннее в нем уже не убегает; то, что оно есть, и то, чем оно должно быть, уже не разделено, но есть одно и то же.
Различие обоих заключается ближайшим образом в том, что в бесконечном ряду отрицательное находится вне его членов, которые даны лишь как части определенного числа . Напротив, конечному выражению, которое есть отношение, отрицательное имманентно, как взаимная определенность членов отношения, которая есть возврат в себя, относящееся к себе единство, как отрицание отрицания ( оба члена отношения суть лишь моменты ), и потому имеет определение бесконечности внутри себя . Действительно, обычная так называемая сумма, 2/7 или 1/(1– а ), есть таким образом отношение ; и это так называемое конечное выражение есть поистине бесконечное выражение . Бесконечный ряд есть в сущности сумма ; его цель состоит в том, чтобы изобразить то, что в себе есть отношение, в форме суммы, и данные члены ряда суть члены не отношения, а агрегата. Он есть далее, напротив, конечное выражение , так как он есть несовершенный агрегат и остается по существу чем-то недостаточным. По тому, что заключается внутри его, он есть определенное количество, но вместе с тем меньшее того, чем оно должно быть; за сим и то, чего ему не хватает, есть определенное количество; эта недостающая часть есть в действительности то, что в ряду называется бесконечным, только в том формальном смысле, что она есть недостающая, небытие ; по содержанию же своему она есть конечное определенное количество. Лишь то, что есть налицо в ряду вместе с тем, чего ему не хватает, образует то, что есть дробь, то определенное количество, которым она вместе и должна, и не может быть. Слово «бесконечное» и в бесконечном ряду мнится быть чем-то высоким и величественным; это есть род суеверия, суеверия рассудка; мы видели, что оно, напротив, сводится к определению недостаточного .
Следует притом заметить, что существование таких бесконечных рядов, которые не суммируются, есть относительно формы ряда вообще обстоятельство внешнее и случайное. Эти ряды представляют собою высший вид бесконечности, чем ряды суммирующиеся, так как в них оказывается несоизмеримость, т. е. невозможность изобразить содержащееся в них качественное отношение, как определенное количество, даже в виде дроби; но свойственная им форма ряда , как таковая, содержит в себе то же самое определение ложной бесконечности, какое присуще суммируемому ряду .
Только что указанная по поводу дроби и ее ряда превратность выражения имеет место и в том случае, когда математическое бесконечное, и именно не только что рассмотренное, а истинное, называется относительным бесконечным, а обычное метафизическое , под которым разумеется {165}отвлеченное, ложное бесконечное, — абсолютным . В действительности же, наоборот, это, метафизическое бесконечное есть только относительное, так как выражаемое им отрицание таково лишь в противоположность некоторой границе, так что последняя остается пребывать вне его и не снимается им; напротив математическое бесконечное действительно сняло с себя конечную границу, так как ее потусторонность соединена с нею.
В указанном смысле, именно в том, что так называемая сумма или конечное выражение бесконечного ряда именно должна бы была называться бесконечным, установил и пояснил примерами различие понятия истинной бесконечности от ложной главным образом Спиноза . Это его понятие будет наилучше освещено, если я свяжу то, что он говорит о нем, с только что изложенным. Он определяет прежде всего бесконечное , как абсолютное утверждение существования какой-либо природы, а конечное, напротив, как определенность , как отрицание . Абсолютное утверждение некоторого существования должно быть именно понимаемо, как ее отношение к самому себе , вследствие которого оно существует не потому, что существует другое; конечное, напротив — есть отрицание, прекращение, отношение к другому , возникающему вне первого.
Правда, абсолютное утверждение некоторого существования не исчерпывает еще понятия бесконечного; последнее содержит в себе еще то определение, что бесконечность есть утверждение не непосредственное, но лишь восстановленное через рефлексию другого в себе самом, как отрицание отрицательного. Ho y Спинозы субстанция и ее абсолютное единство имеют форму единства неподвижного, т. е. неопосредованного самим собою, форму некоторой оцепенелости, в которой нет еще понятия отрицательного единства себя самого, субъективности.
Математический пример, коим он поясняет истинную бесконечность (Epist. XXIX), есть пространство между двумя неравными кругами, из которых один находится внутри другого, не касаясь его и не будучи ему концентричен. Он придает по-видимому большое значение этой фигуре и тому понятию, примером которого она служит, так что избрал ее даже эпиграфом своей этики. «Математики, говорит он, утверждают, что неравенства, возможные в таком пространстве, бесконечны, не вследствие бесконечного множества частей, так как его величина определенна и конечна , и я могу предположить такое пространство бóльшим или меньшим, но потому что тут природа вещи превосходит всякую определенность». Как видно, Спиноза отвергает то представление о бесконечном, по которому оно представляется, как множество или как незаконченный ряд, и указывает на то, что здесь в приводимом, как пример, пространстве бесконечное не потусторонне, а имманентно и закончено; это пространство есть нечто ограниченное, но именно потому бесконечное, «так как природа вещи превосходит всякую определенность», так как содержащееся тут определение величины не может быть вместе с тем изображено, как определенное количество, или так как по вышеприведенному выражению Канта синтезиро {166} вание не может здесь быть доведено до некоторого — дискретного — определенного количества. Каким образом вообще противоположность непрерывного и дискретного определенного количества приводит к бесконечному, — это имеет быть изложено в одном из следующих примечаний. Бесконечное некоторого ряда Спиноза называет бесконечным воображения ; бесконечное же, как отношение к себе самому, — бесконечным мышления или infinitum actu . Оно есть именно actu , оно бесконечно действительно , так как оно закончено в себе и дано. Так ряд 0,285714… или 1+ а + а 2+ а 3… есть бесконечное лишь воображения или мнения, ибо он не имеет действительности, ему для того еще чего-то не хватает; напротив 2/7 или 1/(1–а) есть действительно не только то, что дано в приведенных членах ряда, но и в том, чего ему не хватает, чем он только должен быть , 2/7 или 1/(1– а ) есть такая же конечная величина, как заключенное между двумя кругами пространство Спинозы и неравенства этого пространства, и, как это пространство, она может быть сделана более или менее. Но отсюда не возникает несообразности большего или меньшего бесконечного, так как это определенное количество целого не касается отношения его моментов, природы вещи , т. е. качественного определения величины; а то, что существует в бесконечном ряду, есть также конечное определенное количество, но кроме того нечто недостаточное. Напротив, воображение остается при определенном количестве, как таковом, и не рефлектирует над качественным отношением, в котором заключается основание данной несоизмеримости.
Читать дальшеИнтервал:
Закладка: