Георг Вильгельм Фридрих Гегель - Учение о бытии

Тут можно читать онлайн Георг Вильгельм Фридрих Гегель - Учение о бытии - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Типография М.М. Стасюлевича, год 1916. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание

Учение о бытии - описание и краткое содержание, автор Георг Вильгельм Фридрих Гегель, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)


Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:

1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);

1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).


Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:

1916 г.: Предисловие к русскому переводу, стр. VII–XXII;

1929 г.: От издательства, стр. VII–XI.


В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.


Особенности электронного издания:

1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).

2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.

3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.

4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).

5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).

6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).

7. Греческие слова и выражения приводятся без диакритических знаков.

8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).

Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)

Учение о бытии - читать книгу онлайн бесплатно, автор Георг Вильгельм Фридрих Гегель
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Найденное таким путем конечное уравнение, в котором коэффициент второго члена квадратного уравнения равен удвоенному корню или неизвестному, тожественно уравнению, находимому посредством дифференциального исчисления. Дифференцирование х 2— ах — b =0 дает новое уравнение 2 х — а =0; а дифференцирование х 3— рх — q =0 дает 3 x 2— р =0. Но здесь должно заметить, что правильность таких производных уравнений отнюдь не самоочевидна. Из уравнения с двумя переменными величинами, которые оттого, что они переменны, еще не перестают быть неизвестными, возникает, как указано выше, лишь отношение , по тому приведенному выше простому основанию, что через подстановление функций возвышения в степень вместо самих степеней изменяется значение обоих членов уравнения, и остается еще неизвестным, сохраняется ли между ними уравнение при таком изменении значения. Уравнение dy / dx = Р выражает собою только то, что Р есть отношение , а затем dy / dx не приписывается никакого реального смысла. Об этом отношении = Р также еще неизвестно, какому другому отношению оно равно; оно получает значение лишь через уравнение пропорциональности . Так {198}как было указано выше, что это значение, именуемое приложением, берется извне, эмпирически, то о сказанных выведенных путем дифференцирования уравнениях должно быть также известно извне, имеют ли они равные корни для того, чтобы знать, правильно ли полученное уравнение. Но на это обстоятельство в учебниках определительно не указывают; оно устраняется тем, что, приравнивая нулю уравнение первой степени, сейчас же получают = у , откуда затем при дифференцировании все же получается dy / dx , т. е. лишь отношение. Исчисление функций, конечно, должно во всяком случае иметь дело с функциями возвышения в степень, а дифференциальное исчисление — с дифференциалами, но отсюда еще не следует для себя, что если берутся дифференциалы или функции возвышения в степень каких-либо величин, то эти величины должны быть только функциями других величин. И кроме того, в теоретической части при выводе дифференциалов, т. е. функций возвышения в степень, еще вовсе не думают о том, что величины, с которыми приходится иметь дело после такого вывода, сами должны быть функциями других величин.

Еще можно заметить относительно опущения постоянных величин при дифференцировании, что оно имеет здесь тот смысл, что постоянная величина при равенстве корней безразлична для их определения, так как это определение исчерпывается коэффициентами второго члена уравнения. Так, в приведенном примере Декарта постоянная величина есть квадрат самого корня, следовательно, то последний может быть определен как из нее, так и из коэффициентов, поскольку она, как и коэффициенты, есть функция корней уравнения. В обычном изложении устранение связанной с прочими членами посредством знаков + и — постоянной величины достигается простым механизмом приема, состоящего в том, что для нахождения дифференциала сложного выражения дается приращение лишь переменным величинам, и полученное таким образом выражение вычитается из первоначального. О значении постоянных величин и их опущения, поскольку они сами суть функции и являются нужными или ненужными по этому определению, не поднимается и речи.

С опущением постоянных величин связано такое же замечание по поводу названий дифференцирования и интегрирования, какое ранее было сделано по поводу выражений конечного и бесконечного, а именно что в их определении заключается скорее противоположность того, что выражается этими словами. Дифференцирование означает положение разностей; но через дифференцирование, напротив, уравнение приводится к меньшему объему, опущением постоянной величины устраняется один из моментов определенности; как было указано, корни переменных величин приравниваются, следовательно разность их снимается . При интегрировании же постоянная величина снова должна быть прибавлена; уравнение тем самым интегрируется, но в том смысле, что ранее снятая разность корней снова восстановляется , т. е. что положенное равным дифференцируется. Обычный способ {199}выражения приводит к тому, что существенная сторона дела остается в тени, и все сводится к подчиненной точке зрения, чуждой этой стороне дела, точке зрения отчасти бесконечно малой разности, приращения и т. п., отчасти просто различия между данною и производною функциею, без принятия во внимание специфического, т. е. качественного различения.

Другая главная область, к которой применяется дифференциальное исчисление, есть механика ; о значении различных степенных функций, которые получаются из элементарных уравнений ее предмета, движения , было уже попутно упомянуто; я прямо принимаю их здесь. Уравнение, т. е. математическое выражение ложно равномерного движения с = s / t или s = ct , в котором пройденные пространства относятся к протекшим временам, как эмпирическая единица с , означающая величину скорости, не дает никакого повода к дифференцированию; коэффициент с уже вполне определен и известен, и относительно него не может иметь места никакое дальнейшее степенное развитие. Как анализируется s = at 2, уравнение падения тел, было уже указано; первый член анализа ds / dt =2 at понимается и словесно и реально так, что он должен быть членом суммы (каковое представление мы уже устранили), одною частью движения, которому должна быть присуща сила инерции, т. е. ложно равномерной скорости, таким образом, что в бесконечно малые промежутки времени движение совершается равномерно , а в конечные промежутки времени, т. е. в действительности, неравномерно. Конечно f's =2 at ; значение а и t известно, равно как тем самым положено определение скорости равномерного движения; так как а = s / t 2, то вообще 2 at =2 s / t ; но тем самым мы ни мало не приобретаем дальнейшего знания; лишь ложное предположение, что 2 at есть часть движения, как суммы , дает здесь ложную видимость физического предложения. Самый множитель а , эмпирическая единица — определенное количество, как таковое — приписывается тяготению; но если пускается в ход категория силы тяготения, то следовало бы скорее сказать, что именно целое s = at 2есть действие или, правильнее, закон тяготения. Тому же соответствует и выведенное из ds / dt =2 at предложение, что если бы прекратилось действие тяготения, то тело со скоростью, приобретенною в конце своего падения, прошло бы пространство вдвое большее пройденного во время, равное времени его падения. Здесь мы встречаем и саму для себя превратную метафизику; конец падения или конец части времени, в которое падает тело, есть всегда сам еще часть времени; если бы он не был такою частью, то наступил бы покой и следовательно — отсутствие скорости; скорость может быть измеряема лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, наконец, и в других отраслях физики, которые вовсе не имеют дела с движением, например относительно света (за исключением того, {200}что называется его распространением в пространстве) и количественных определений цветов, прибегают к приложению дифференциального исчисления, и первая производная функция квадратной функции именуется и здесь скоростью, то на это следует смотреть как на еще более неуместный формализм вымышляемого существования.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Георг Вильгельм Фридрих Гегель читать все книги автора по порядку

Георг Вильгельм Фридрих Гегель - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учение о бытии отзывы


Отзывы читателей о книге Учение о бытии, автор: Георг Вильгельм Фридрих Гегель. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x