Георг Вильгельм Фридрих Гегель - Учение о бытии
- Название:Учение о бытии
- Автор:
- Жанр:
- Издательство:Типография М.М. Стасюлевича
- Год:1916
- Город:Петроград
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Георг Вильгельм Фридрих Гегель - Учение о бытии краткое содержание
К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812–2012)
Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842–1918). Этот перевод издавался дважды:
1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах — по числу книг в произведении);
1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах — по числу частей в произведении).
Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация — своя на каждую книгу). Единственным содержательным отличием двух изданий является текст предисловий в первом томе:
1916 г.: Предисловие к русскому переводу, стр. VII–XXII;
1929 г.: От издательства, стр. VII–XI.
В переводе Н.Г. Дебольского встречаются устаревшие на сегодня слова, формы слов и обороты речи.
Особенности электронного издания:
1. Состоит из трех файлов — по числу книг в произведении. В первом файле приводятся предисловия обоих изданий. В третьем файле не приводится алфавитный указатель ко всему произведению (стр. 219–222 бумажного издания).
2. Текст печатается с пагинацией, номер страницы указывается в ее начале нижним индексом в фигурных скобках.
3. Весь текст приводится в современной орфографии (например, в отличие от издания 1929 г. используется твердый знак «ъ» вместо апострофа «’»). Слово «Бог» и относящиеся к нему местоимения (напр., «Он») пишутся с большой буквы. Ударение над русской буквой о передается с помощью буквы европейского алфавита ó.
4. Немецкие слова и выражения приводятся в старой орфографии печатных изданий (напр., «Seyn»).
5. Разрядка текста заменена курсивом (курсив, используемый в бумажных изданиях крайне редко, сохранен).
6. Формулы с дробями приведены к линейному виду. В качестве знака умножения используется звездочка (*).
7. Греческие слова и выражения приводятся без диакритических знаков.
8. Проверка выбранного шрифта: греческая альфа (α), буквы немецкого алфавита (äöüß).
Учение о бытии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Этот прием опирается, как на свое предположение, на то общее открытие, которое лежит в основе этой отрасли анализа, имеющее здесь тот смысл, что квадратура кривой, выпрямленная дуга и т. д. находятся к известной данной в уравнении кривой функции в отношении так наз. первоначальной функции к производной . Задача состоит в том, чтобы узнать, если известная часть математического предмета (напр., кривой линии) принимается за производную функцию, какая другая его часть выражается соответствующею первоначальною функциею. Известно, что если данная в уравнении кривой функция ординаты принимается за производную функцию, то соответственная ей первоначальная функция есть выражение величины отрезанной этою ординатою и кривою плоскости, что если принимается за производную функцию известное определение касательной , то первоначальная функция выражает величину соответствующей этому определению дуги и т. д.; но что эти отношения — одно первоначальной функции к производной, и другое величин двух частей или атрибутов математического предмета — образуют пропорцию, узнать и доказать этого не считает нужным тот метод, который пользуется бесконечно малыми и механическими действиями над ними. Является уже своеобразною заслугою остроумия нахождение вне уже известных результатов того, что некоторые и именно такие-то стороны математического предмета находятся в отношении первоначальной и производной функции.
Из этих обеих функций производная или, как она была определена, функция возвышения в степень, есть в интегральном исчислении данная ; а первоначальная должна быть выведена из нее путем интегрирования. Но {203}первая дана не непосредственно, равно как не дано для себя, какую часть математического предмета следует считать за производную функцию, дабы через приведение ее к первоначальной найти другую часть или определение требуемой задачею величины. Обычный — метод, который, как сказано, сейчас же представляет известные части предмета, как бесконечно малые, в форме производной функции, находимой через дифференцирование первоначально данного уравнения предмета (напр., при выпрямлении кривой бесконечно малые абсциссы и ординаты), но зато принимает такие части, которые можно привести в связь с предметом задачи (в примере дуги), представляемом так же, как бесконечно малый, установленную элементарною математикою, вследствие чего, если эти части известны, то определяется и та часть, величина которой есть искомое; так, для выпрямления кривой пользуются вышеуказанными тремя бесконечно малыми, соединяемыми в уравнение прямоугольного треугольника, для ее квадратуры — ординатою, соединяемою с бесконечно малыми абсциссою в произведение, причем поверхность совершенно арифметически считается произведением линий. Переход от таких так называемых элементов поверхности, дуги и т. п. к величине самих поверхностей, дуги и т. п., считается затем лишь восхождением от бесконечного выражения к конечному или суммою бесконечно многих элементов, из которых должна состоять искомая величина.
Можно поэтому сказать лишь поверхностно, что интегральное исчисление есть только обратная, но вообще более трудная проблема дифференциального исчисления; реальный же интерес интегрального исчисления направляется напротив исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.
Лагранж и в этой части исчисления приложил столь же мало старания к разрешению трудности проблемы простым способом, основанным на этих прямых предположениях. Для разъяснения сущности дела полезно привести небольшое число примеров с целью ближайшего ознакомления с его приемом. Он ставит себе задачею доказать для себя, что между частными определениями некоторого математического целого, напр., кривой линии, существует отношение первоначальной к производной функции. Но этого нельзя достигнуть в рассматриваемой области прямым путем, основанным на природе самого отношения, которое в математическом предмете приводит в связь кривые линии с прямыми, линейные протяжения и их функции с поверхностными протяжениями и их функциями и т. д., т. е. качественно различное : поэтому определение можно понимать, лишь как средину между бóльшим и меньшим . Тем самым мы вновь возвращаемся к форме приращения с + и —, и бодрое: développons вступает в свою силу; но уже ранее было указано, что приращения имеют здесь лишь арифметическое, конечное значение. Из соображения того условия, что искомая величина более, чем один легко находимый предел, и менее, чем другой, выводится, например, что функция ординаты есть первая производная функция функции плоскости. {204}
Выпрямление прямых по способу Лагранжа , исходящего при этом от принципа Архимеда , представляет тот интерес, что оно обнаруживает нам перевод архимедова метода на язык нового анализа, что позволяет бросить взгляд на внутренний и истинный смысл механически производимого другим путем действия. Этот способ по необходимости аналогичен вышеуказанному способу; архимедов принцип, по которому дуга кривой более, чем соответствующая ей хорда, и менее, чем сумма двух касательных, проведенных к конечным точкам дуги, поскольку она заключена между этими двумя точками и точкою пересечения касательных, не дает прямого уравнения. Переводом этого архимедова основного определения в новую аналитическую форму служит изобретение такого выражения, которое должно быть для себя простым основным уравнением, так как эта форма ставит лишь требование движения в бесконечность между бóльшим и меньшим, постоянно сохраняющими определенную величину, каковой переход постоянно дает лишь новые большее и меньшее, хотя во все более тесных пределах. При помощи формализма бесконечно малых сейчас же получается уравнение dz 2= dx 2+ dy 2. Изложение Лагранжа , исходящее от вышеуказанного основоположения, обнаруживает напротив, что величина дуги есть первоначальная функция некоторой производной функции, характеризующий которую член сам есть функция отношения производной функции к первоначальной функции ординаты.
Так как в способе Архимеда так же, как впоследствии в кеплеровом исследовании предметов стереометрии, выступает представление бесконечно малых, то это часто служило авторитетом для такого употребления этого представления, какое делается в дифференциальном исчислении, без принятия в соображение имеющих тут место своеобразия и различия. Бесконечно малое означает прежде всего отрицание определенного количества, как такового, т. е. так называемого конечного значения, законченной определенности, присущей определенному количеству, как таковому.
Читать дальшеИнтервал:
Закладка: