Роджер Пенроуз - Тени разума. В поисках науки о сознании

Тут можно читать онлайн Роджер Пенроуз - Тени разума. В поисках науки о сознании - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Институт компьютерных исследований. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Тени разума. В поисках науки о сознании
  • Автор:
  • Жанр:
  • Издательство:
    Институт компьютерных исследований
  • Год:
    неизвестен
  • ISBN:
    5-93972-457-4, 0-19-510646-6
  • Рейтинг:
    4.73/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Роджер Пенроуз - Тени разума. В поисках науки о сознании краткое содержание

Тени разума. В поисках науки о сознании - описание и краткое содержание, автор Роджер Пенроуз, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.

Для широкого круга читателей, интересующихся наукой.

Тени разума. В поисках науки о сознании - читать онлайн бесплатно полную версию (весь текст целиком)

Тени разума. В поисках науки о сознании - читать книгу онлайн бесплатно, автор Роджер Пенроуз
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

26

Весьма живо и популярно все это описано в [ 389].

27

Подобное предположение выдвинул, например, Ричард Доукинс в своих «Рождественских лекциях» (ВВС, 1992 г.).

28

См., например, рассказ Фридмена [ 124] о работе Лената и других исследователей в этом направлении.

29

Кому-то, возможно, покажется, что это совершенно «очевидно» и уж никак не может служить предметом спора среди математиков! Проблема, однако, существует, и возникает она в связи с понятием «существования» применительно к большим бесконечным множествам. (См., например, [ 350], [ 329], [ 266].) На примере парадокса Рассела мы уже убедились, что в таких вопросах необходимо проявлять особую осторожность.

Согласно одной точке зрения, множество не считается необходимо существующим, если нет четкого правила (не обязательно вычислимого), устанавливающего, какие элементы в это множество следует включать, а какие — нет. Как раз этого правила аксиома выбора нам и не предоставляет, поскольку в ней нет правила, определяющего, какой элемент следует взять из каждого множества совокупности. (Некоторые из следствий аксиомы выбора интуитивно не понятны и почти парадоксальны. Вероятно, в этом и состоит одна из причин возникновения разногласий по данному вопросу. Более того, я не совсем уверен, что знаю, какой позиции придерживаюсь в этом отношении я сам !)

30

В заключительной главе своей книги, написанной в 1966 году, Коэн подчеркивает, что, хотя он и показал, что континуум-гипотеза является НЕРАЗРЕШИМОЙ в рамках процедур системы ZF, вопрос о том, является ли она действительно истинной , был оставлен им без внимания, — и выдвигает некоторые предположения относительно того, каким образом этот вопрос можно действительно решить ! То есть Коэн, со всей очевидностью, не считает, что выбор между принятием или непринятием континуум-гипотезы есть предмет абсолютно произвольный. Это расходится с нередко высказываемым относительно следствий из результатов Гёделя—Коэна мнением, суть которого сводится к тому, что существуют многочисленные «альтернативные теории множеств», для математики в равной степени «справедливые». Такие замечания свидетельствуют о том, что Коэн, подобно Гёделю, является подлинным платонистом, для которого вопросы математической истины ни в коем случае не произвольны, но абсолютны . Очень похожих взглядов придерживаюсь и я, см. §8.7.

31

См., например, [ 202], [ 37].

32

См., например, различные комментарии, приведенные в Behavioral and Brain Sciences, 13 (1990), 643-705.

33

Терминология была предложена Хофштадтером в [ 202]. Согласно «другой» теореме Гёделя — так называемой теореме о полноте , — подобные нестандартные модели существуют всегда.

34

Вообще говоря, это зависит от того, какие именно утверждения считать частью так называемой «евклидовой геометрии». Если пользоваться обычной терминологией логиков, то система «евклидовой геометрии» включает только утверждения некоторого частного вида, причем оказывается, что истинность или ложность этих утверждений можно определить с помощью алгоритмической процедуры; отсюда и утверждение, что евклидову геометрию можно описать с помощью формальной системы. Однако в других интерпретациях обычная «арифметика» тоже могла бы считаться частью «евклидовой геометрии», что допустило бы классы утверждений, которые невозможно разрешить алгоритмическим путем. То же самое произошло бы, если бы мы рассмотрели задачу о замощении плоскости полиомино как составляющую евклидовой геометрии, что, казалось бы, вполне естественно. В этом смысле описать геометрию Евклида формально ничуть не проще, чем арифметику!

35

См. комментарий М. Дэвиса в [ 74].

36

См. также [ 231], [ 232] и [ 163].

37

О некоторых проблемах, с которыми сталкивались компьютерные системы, пытавшиеся самостоятельно «делать математику», можно прочесть у Д. Фридмана [ 124]. Отметим, что в общем случае такие системы не слишком преуспели. Они по-прежнему остро нуждаются в помощи человека.

38

Цитата приводится по [ 329] и [ 376]. Она, судя по всему, является частью Гиббсовских лекций Гёделя, прочитанных в 1951 году; полный текст имеется в Собрании сочинений Гёделя, том 3 [ 160]. См. также [ 377], с. 118.

39

См. [ 198], с. 361. Цитата взята из лекции Тьюринга, прочитанной в 1947 году перед Лондонским математическим обществом и приводится по изданию [ 370].

40

Упомянутая процедура заключается во вложении системы ZFв систему Гёделя—Бернайса; см. [ 56], глава 2.

41

См. [ 181], с. 74.

42

Это самое количество состояний Вселенной (число порядка 10 10 123или около того) представляет собой объем доступного фазового пространства (измеренный в абсолютных единицах из §6.11) некоторой области, содержащей в себе такое количество вещества, какое заключено внутри наблюдаемой нами в настоящий момент Вселенной. Величину этого объема можно оценить, применив формулу Бекенштейна—Хокинга для энтропии черной дыры с массой, равной массе упомянутого количества вещества, и найдя экспоненту от этой энтропии (в абсолютных единицах из §6.11). См. НРК, с. 340-344.

43

См. [ 267], [ 268].

44

См., напр., [ 102] (и НРК, глава 9).

45

Популярно об этих исследованиях рассказано в [ 153] и [ 337].

46

Из классической теории фон Неймана и Моргенштерна (1944).

47

См. [ 153], [ 337].

48

Популярное изложение этих вопросов можно найти в [ 350], [ 351] и [ 329].

49

Гипотеза Тебо — это весьма занимательная (и даже не слишком сложная) теорема из плоской евклидовой геометрии, которую, тем не менее, не так-то просто доказать непосредственно. Как выяснилось, единственный способ ее доказательства заключается в том, чтобы отыскать подходящее обобщение (что сделать не в пример легче), а уже затем выводить требуемый результат в виде особого случая. Такая процедура довольно широко распространена в математике, однако для компьютеров она, как правило, совершенно не годится, поскольку отыскание необходимого обобщения требует немалой изобретательности и способности разбираться в сути проблемы. Компьютерное же доказательство подразумевает наличие некоей четкой системы нисходящих правил, которым машина в дальнейшем и следует неуклонно с поражающей воображение скоростью. В данном случае львиная доля человеческой изобретательности как раз и пошла в первую очередь на разработку эффективной системы таких нисходящих правил.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роджер Пенроуз читать все книги автора по порядку

Роджер Пенроуз - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Тени разума. В поисках науки о сознании отзывы


Отзывы читателей о книге Тени разума. В поисках науки о сознании, автор: Роджер Пенроуз. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x