Алексей Лосев - Итоги тысячелетнего развития, кн. I-II

Тут можно читать онлайн Алексей Лосев - Итоги тысячелетнего развития, кн. I-II - бесплатно полную версию книги (целиком) без сокращений. Жанр: Философия, издательство Искусство, год 1992. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Итоги тысячелетнего развития, кн. I-II
  • Автор:
  • Жанр:
  • Издательство:
    Искусство
  • Год:
    1992
  • Город:
    М
  • ISBN:
    нет данных
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Алексей Лосев - Итоги тысячелетнего развития, кн. I-II краткое содержание

Итоги тысячелетнего развития, кн. I-II - описание и краткое содержание, автор Алексей Лосев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Последний, итоговой том грандиозного исследования Лосева. Он посвящен двум задачам. Первая: описать последнюю стадию античной мысли, именно ее переход в средневековую, слом античности и формирование совершенно новой эстетики: патристика Востока и Запада и "переходные" "синтетические" формы: халдеизм, герметизм, гностицизм.

Вторая задача восьмого тома - подвести итог вообще всей "эпопее", в этом смысле "Итоги" можно считать чем-то вроде конспекта ИАЭ. Все основные "сюжеты" здесь есть, даются итоговые формулировки, строится целостная картина античной эстетики как таковой, система ее категорий как кратко в ее истории, так и по существу.


Источник электронной публикации: http://psylib.ukrweb.net/books/lose008/index.htm

Итоги тысячелетнего развития, кн. I-II - читать онлайн бесплатно полную версию (весь текст целиком)

Итоги тысячелетнего развития, кн. I-II - читать книгу онлайн бесплатно, автор Алексей Лосев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

То же самое получается также и при разделении отрезка прямой на все меньшие и меньшие отрезки, которые, как бы они ни уменьшались, никогда не могут стать равными нулю. Это было тоже осознанием концепции, которую мы сейчас называем принципом бесконечно малых величин. Платоновскую систему идей и чисел этот принцип Евдокса решительно реформировал в том смысле, что идея вещи, или ее число, соотносилась с самой вещью не просто категориально, то есть в условиях неподвижности как идеи, или числа, так и вещи, но в условиях непрерывного растекания идеи, или числа, непрерывного становления этой идеальной области, непрерывного излияния идей и чисел в инобытии вплоть до возникновения вещей.

Такая концепция сущностного становления несомненно повлияла на Аристотеля, который, как мы знаем, тоже боролся с предполагаемой платоновской неподвижностью идей и чисел и на этом основании ввел, например, свое замечательное учение о потенции, энергии и энтелехии. Однако и Аристотель это континуально–сущностное становление все еще слишком близко связывает с самими идеями и числами и не рассматривает это становление как таковое в его чистом виде. На путях самостоятельного изучения такого текуче–сущностного становления, насколько можно судить, сыграли в античности большую роль представители точного знания, у которых принцип исчерпывания Евдокса как раз и получил большое развитие. Само собой разумеется, что это текуче–сущностное становление уже и Аристотель не мог не рассматривать в специальном виде. Ему принадлежит специальный трактат"О возникновении и уничтожении". В этом трактате множество разного рода тонких наблюдений.

Однако наблюдения эти соответствуют нашей общей характеристике философии Аристотеля как дистинктивно–дескриптивного аналога платонизма.

б)Чтобы перейти к дальнейшему, нужно остановиться еще на одной идее Евдокса, которая имеет ближайшее отношение к теории континуума. Эта идея уже не чисто геометрическая, но общечисловая и даже общепонятийная. Это есть проблема пропорций в связи с континуумом. В этой сложной области мы не будем приводить всех первоисточников, поскольку они уже приведены в науке и достаточно обстоятельно обследованы [226] См.: Waschkies H.J. "Von Eudoxos zu Aristoteles. Das Fortwirken der Eudoxischen Proportionentheorie in der Aristotelischen Lehre vom Kontinuum" (Amsterdam, 1977). S. 20-151. . Не будем касаться и подробностей этой сложной проблемы, а скажем только самое главное, и притом с нашей собственной интерпретацией.

Пропорция есть равенство отношений. Но что такое отношение? С первого взгляда кажется, что для отношения нужны соотносящиеся величины, а величины должны быть определены качественно или количественно. Но, судя по материалам Евдокса, дело здесь вовсе не в качествах и не в количествах. А если так, то Евдокса здесь интересует, очевидно, отношение только как логическая категория. А в этом смысле оно совершенно одинаково присутствует решительно везде. Ведь мы уже видели, как пропагандисты чистого и вполне изолированного единства, – и это уже начиная с самого Парменида, – требовали присутствия такого единого решительно во всем существующем, поскольку все существующее всегда есть нечто, и притом определенное нечто, то есть тем самым является и неделимым единым, как бы пестры и разнообразны ни были существующие вещи. Вот точно так же каждой вещи присуще и отношение ее к другим вещам, без которого эта вещь не могла бы быть ориентирована среди всех других вещей. Но если отношение одинаково присуще всем вещам, оно тем самым, следовательно, и непрерывно. Вещи только потому и могут мыслиться нами, что они отличаются одна от другой и сопоставимы одна с другой. А это и значит, что и природа и функционирование отношения возможны только в виде всеобщего континуума.

На этом основании Евдокс доказывал, что и пропорция возможна только потому, что существует континуум. Пропорция есть равенство отношений, и даже не просто равенство, но и вообще любая связь. Другими словами, если все действительно связано и представляет собою единораздельную цельность, то это возможно только потому, что эта цельность, будучи тем или иным единством отношений, совершенно непрерывно представлена во всех своих частях. А это значит, что здесь Евдокс демонстрирует общеантичную идею тождества нераздельного единства и бесконечно становящейся внутренней множественности этого единства. Именно так, надо думать, Евдокс опирает систему отношений на всеобщий континуум, а всеобщий континуум понимает как систему отношений.

Интересно отметить, что подобного рода сведения о пропорциях мы получаем из V книги"Элементов"Евклида, но анонимный схолиаст Евклида (Eucl. V, pars. 1, p. 211, 7 – 8; 213, 1 – 7 Heib. – Stam.) утверждает, что вся эта книга, возможно, принадлежит Евдоксу.

Если вернуться к методу исчерпывания Евдокса, но уже не для самого Евдокса, которого мы проанализировали, а для его последующих сторонников, то необходимо будет сказать о Евклиде и Архимеде.

Прежде чем расстаться с Евдоксом, мы хотели бы обратить внимание на образцовое издание его фрагментов, принадлежащих Ф. Лассерру. Здесь кроме античных свидетельств об Евдоксе (с. 3 – 11) и общих суждений об его учении в области философии (с. 12 – 14), астрономии (с. 15 – 18) и геометрии (с. 18 – 37) дается тщательный подбор собственных суждений Евдокса (с. 39 – 134). Наконец, это издание Ф. Лассерра необходимо высоко расценивать еще и потому, что все приводимые в нем фрагменты снабжены обширным и много дающим комментарием (с. 137 – 271).

в)Между прочим, такое тщательное издание фрагментов Евдокса, как издание Ф. Лассерра, интересно еще и тем, что дает возможность точно определить место бесконечно малых в мировоззрении Евдокса. Когда некоторые исследователи характеризуют бесконечно малые у Евдокса как то, что может стать меньше любой заданной величины, то подобного рода утверждение звучит совсем в стиле современного математического анализа, где такого рода определение действительно дается в чистом виде. Но такое абстрактное понимание бесконечно малого не существовало раньше Ньютона и Лейбница. Раньше это было только частичной характеристикой того или иного вполне конкретного и вполне специфического бытия. Так, например, точные категории математического анализа назревали у Николая Кузанского только в связи с его чисто теологическими представлениями. Точно так же невозможно и древним приписывать какой нибудь инфинитезимализм в чистом виде. Ведь все наши предыдущие исследования были основаны на чисто телесном миропредставлении, на чисто физической интуиции живого тела. Поэтому и к своему представлению о бесконечно малом приближении древние приходили обязательно только в связи с основной телесной интуицией. Наблюдая живые тела, древние не могли сводить эти тела только на совокупность мертвых линий и фигур, хотя бы и чисто телесных. Эти телесные линии, фигуры и тела при всей своей скульптурной законченности рассматривались еще и как подвижные, живые и бурлящие, как властно зовущие сплошно и непрерывно переходить от одного их момента к другому. Такого рода величины становились тем, что мы сейчас называем иррациональными величинами. Но, во–первых, всякая такая иррациональность всегда мыслилась в античности как нечто зримо и телесно ощутимое; а во–вторых, также и те величины, которые мы сейчас называем иррациональными, тоже рассматривались древними в их живом смысловом потоке. Проще всего это видно хотя бы на диагонали квадрата, сторона которого равна 1. Ведь такая диагональ квадрата равняется корню квадратному из 2, причем сами древние прекрасно понимали, что такая диагональ квадрата несоизмерима со стороной квадрата, то есть не имеет с ней общей меры. Такой квадратный корень из 2 недостижим никакими вычислениями, а, тем не менее он вполне телесен и его можно видеть. Вот это и есть настоящее античное учение о бесконечно малом. Эта бесконечность ни при каких абсолютных вычислениях недостижима, но она телесна и ее можно видеть. Поэтому необходимо сказать, что бесконечно малое ни в какай мере не было в античности уничтожением исходной и вполне конечной телесной интуиции, а, наоборот, было только оживлением и бурлящим смысловым потоком все тех же единораздельных и скульптурных построений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Алексей Лосев читать все книги автора по порядку

Алексей Лосев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Итоги тысячелетнего развития, кн. I-II отзывы


Отзывы читателей о книге Итоги тысячелетнего развития, кн. I-II, автор: Алексей Лосев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x