Арнольд Минделл - Квантовый ум. Грань между физикой и психологией

Тут можно читать онлайн Арнольд Минделл - Квантовый ум. Грань между физикой и психологией - бесплатно ознакомительный отрывок. Жанр: Философия, издательство Лао цзы пресс, год 2011. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовый ум. Грань между физикой и психологией
  • Автор:
  • Жанр:
  • Издательство:
    Лао цзы пресс
  • Год:
    2011
  • Город:
    Москва
  • ISBN:
    978-5-93454-147-8
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Арнольд Минделл - Квантовый ум. Грань между физикой и психологией краткое содержание

Квантовый ум. Грань между физикой и психологией - описание и краткое содержание, автор Арнольд Минделл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большинство ученых даже не подозревает, что физика и математика основываются на том, что было всегда известно психологии и шаманизму, – на способности любого человека осознавать едва заметные, сноподобные события. Эта книга посвящена нашему процессу осознания и его непостижимой способности участвовать в создании реальности. В ней обсуждается тонкое взаимодействие природы с самой собой на заднем плане нашего восприятия, создающее наблюдаемый мир.

Квантовый ум. Грань между физикой и психологией - читать онлайн бесплатно ознакомительный отрывок

Квантовый ум. Грань между физикой и психологией - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Арнольд Минделл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В таком случае арифметика не может быть свободной от противоречий. Можно было бы подозревать, что теорема Гёделя обескуражит ученых, надеявшихся разработать набор аксиом, из которых можно будет выводить все феномены 5. На мой взгляд, дело обстоит противоположным образом. Сегодня большинство ученых действуют так, как будто можно открыть окончательную теорему, из которой можно будет приемлемым образом выводить математические описания всех физических событий.

Единственное известное мне следствие теоремы Гёделя в психологии – это неписанное правило в умах некоторых терапевтов, таких как я сам, что человеческая раса непоследовательна и противоречива. Верно, что арифметические операции придают сновидениям и измененным состояниям сознания больше логики, чем кажется на первый взгляд, но эта логика – в большей степени общий принцип, нежели неизменный закон.

Первичные и вторичные качества материи

Примерно в тот же период, когда были открыты или придуманы мнимые числа, Галилей в 1623 г. провел различие между «первичными» и «вторичными» качествами материи 6. Он называл первичными качествами материи те, которые можно измерять и описывать с помощью действительных чисел (например, 4 килограмма, 10 километров, 60 секунд). Согласно Галилею вторичные качества (например, любовь или цвет) не могут быть сведены к объективным измерениям и, следовательно, находятся вне сферы науки.

С точки зрения нашего теперешнего обсуждения представляется, что первичные и вторичные качества, о которых говорил Г алилей, сходны с тем, как я использую термины «общепринятая» и «необщепринятая реальность», и с тем, что имеет в виду Альберт Эйнштейн в цитате из его книги по теории относительности, приводившейся в первой главе:

… определенные чувственные восприятия разных людей соответствуют друг другу, в то время как для других чувственных восприятий подобное соответствие установить невозможно 7.

Галилей жил в поворотный момент в истории западной цивилизации, во времена, когда происходило отделение количественных характеристик материи от чувств по отношению к ней. История западной цивилизации показывает, что наука шла в направлении, предсказанном Галилеем, и отвергала качества переживаний НОР. Тогда ученые решили, и считают так и поныне, что мнимые числа – это нечто вроде галилеевых вторичных качеств, они не имеют непосредственного физического смысла и не входят в сферу науки.

Это сопротивление, отчасти, было обусловлено тем, что в эпоху Возрождения росло разделение между материей и душой, между физической и нефизической сферами. Мнимые числа появились как раз тогда, когда физика и математика отчаянно пытались отделиться от религии и таинств алхимии, бывшей сочетанием химии и медитации, психологии и физики. Это разделение было чрезвычайно полезным, но теперь настало время для воссоединения. История мнимых чисел подсказывает, как будет происходить это воссоединение.

Математика мнимых чисел

История развития мнимых чисел весьма интересна, так как она следует по пути постоянных (и не вполне успешных) попыток избавиться от «вторичных качеств» природы. В XVII в. математики Джон Уоллис (1616-1703) и Готфрид Лейбниц (1646-1716), наряду с другими, обдумывали проблему квадратного корня отрицательных чисел. Они знали, что если взять квадрат с площадью, равной 1, то квадратный корень тоже будет равен 1.

Давайте еще раз подумаем о мнимых числах. Эти математики знали, что если нужно найти квадратный корень числа 4, это будет 2. Почему? Потому что, как я говорил ранее, если вы возводите число 2 в квадрат, то получается 4, то есть 2 х 2 = 4.

Что, умноженное само на себя, дало бы в результате отрицательное число? Ответа никто не знал. Поэтому математики пришли к выводу, что в их поле действительных чисел должно чего-то не хватать, так как в этом поле не было ничего такого, что давало бы им квадратные корни отрицательных чисел. Они знали, что им нужен новый вид числового поля, которое было бы расширенным вариантом поля действительных чисел, так как ничто в поле действительных чисел не вело к квадратному корню -1! Докажите это сами.

Квадратный корень из + 9 равен 3.

из +3 равен 1,732…

из +2 равен 1, 414.

из +1 равен 1,000.

из +0,5 равен 0,707.

Квадратный корень из +0,2 равен 0,447.

из +0,01 равен 0,100.

из -1 равен ???

Что такое квадратный корень -1??? Ничто в поле действительных чисел.

. -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5.

После некоторых размышлений о его возможной мистической природе математики, наконец, договорились подавлять мистицизм, связанный с i, и определять его чисто технически как квадратный корень -1.

Иными словами, они отделили свои чувства относительно ухода из реального числового поля и вхождения в новую сферу, которую они называли «мнимой», взамен создав практический набор определений. С чисто логической или математической точки зрения, они не могли находить квадратные корни отрицательных чисел и потому придумали один такой корень, приписав математическое свойство √-1 одной букве алфавита! Результатом было и до сих пор остается то, что квадратный корень из -1 обозначается буквой i, то есть:

√-1 = i

Это обозначение интересно само по себе, но его истинная ценность открывается, когда вы производите следующее определение. Если вы умножаете мнимое число само на себя, то получаете действительное число, то есть:

i × i = -1,

и значит

√-1 = i

Это определение означает, что существует связь между действительными и мнимыми числами. Это определение призвано быть логичным и не нуждающимся в объяснении. И это определение удивительно! Оно дает науке новое измерение.

Действительные числа можно непосредственно считать, а мнимые нельзя. Вы знаете, к чему относится число 5. Оно меньше, чем 6, и больше, чем 4. Но какое отношение имеет 5i к 5? Оно не больше и не меньше, чем 5, но и не равно 5! Вы можете сосчитать пять овец и называть это «5». Но 5i не имеет непосредственного, измеримого значения.

Первые изобретатели мнимых чисел считали эти числа мистическими, поскольку их нельзя было увидеть в реальности. Изобретатели надеялись, что эти числа – просто логические или умственные конструкции, что бы это ни означало. Однако Лейбниц думал иначе. Он не только определял мнимое число как i х i = —1, но и описывал его как «Святой Дух» математики, возможно, потому что его физическое значение не поддавалось непосредственному пониманию. Для него мнимое число было призраком – Святым Духом, стоящим за материальной реальностью. Для Лейбница мнимые числа были «утонченным и удивительным прибежищем божественного духа – почти промежуточной стадией между бытием и небытием…»

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Арнольд Минделл читать все книги автора по порядку

Арнольд Минделл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовый ум. Грань между физикой и психологией отзывы


Отзывы читателей о книге Квантовый ум. Грань между физикой и психологией, автор: Арнольд Минделл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x