Вадим Розин - Семиотические исследования
- Название:Семиотические исследования
- Автор:
- Жанр:
- Издательство:Литагент «Когито-Центр»881f530e-013a-102c-99a2-0288a49f2f10
- Год:2001
- Город:Москва, Санкт-Петербург
- ISBN:5-9292-0023-8, 5-323-00004-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Вадим Розин - Семиотические исследования краткое содержание
Известный российский философ и методолог, отталкиваясь от семиотических исследований своего учителя Г. П. Щедровицкого, излагает собственные результаты многолетней работы в этой области. В отличие от других семиотиков в семиотическую теорию В. Розин включает не только учение о знаках и их типах, но оригинальные концепции схем как семиотических образований, психических реальностей, семиотических организмов (познания и искусства). На основе семиотического подхода автору удается объяснить феномен человека, некоторые особенности искусства и научного творчества, наконец, эзотерический опыт и представления.
Семиотические исследования - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Спустимся теперь с абстрактных высот этих принципов на землю и посмотрим – «методом проникновения» в чужую культуру, – как же мог вавилонский математик, он же, как известно, старший писец и распорядитель хозяйственных работ, он же часто и учитель, решать математические задачи.
Для примера мы возьмем следующую типичную задачу.
Условие задачи : два поля Агар (гар – мера площади). Одно поле превышает (больше второго) на Вгар. Узнай каждое поле.
Решение : Аи Вразбей (раздели) пополам. Получишь aи b. Сложи aи b, первое поле видишь (т. е. величина первого поля равна сумме aи b). Из aвычти b, второе поле (величина второго поля равна разности aи b).
Теперь отправимся в прошлое. Итак, однажды в Древнем Шумере или Вавилоне к вавилонскому писцу, учителю и математику, пришли люди и, поклонившись, говорят: «Ты искусный и мудрый писец, имя твое славится, помоги нам поскорей. Два поля земли было у нас, одно превышало другое на 20 гар, об этом свидетельствует младший писец, бравший с нас налог, остальное он забыл. Прошлой ночью разлив реки смыл межевые камни и уничтожил границу между полями. Сосчитай же скорей, каковы наши поля, ведь общая их площадь известна – 60 гар».
Выслушав людей, писец стал размышлять. Таких задач он никогда не решал. Он умел измерять поля, вычислять площади полей, если даны их элементы (ширина, длина, линия раздела), умел делить поля на части, соединять несколько полей между собой и даже узнавать сторону квадратного поля, если была известна его площадь. Он имел дело с тысячами таких задач, обучал в школе их решению и так хорошо знал свое дело, что перед его глазами как живые стоят глиняные таблички с решениями задач, чертежами полей и числами, проставленными на этих чертежах. Такие таблички он, старший писец и учитель, составляет каждое утро и дает переписывать своим ученикам. Но среди табличек нет такой, которая бы помогла ему сейчас. Писец хотел было уже отослать людей, как вдруг вспомнил о задачах, которые он задал на табличках в прошлую неделю. Эти задачи были похожи на то, о чем ему говорили пришедшие люди. Перед глазами писца возникли чертежи с числами и решения.
Первая задача . Поле в 60 гар (как раз такое по величине, которое возникло после разлива) разделили пополам. Узнай каждое поле.
Решение. 60:2=30
Вторая задача . Поле 30 гар и другое 30 гар. От первого поля отрезали участок, равный 5 гар, и прибавили его к другому полю. Узнай получившиеся поля.
Решение. 30–5=25 30+5=35
Третья задача . Два поля 35 гар и 25 гар. На сколько одно поле выступает над другим.
Решение. 35–25=10
Четвертая задача. Два поля 35 гар и 25 гар соединили. Узнай получившееся поле.
Решение. 35+25=60
Писец вспомнил, что, решая сам эти задачи, он удивился, почему разница между полями – 10 гар – оказалась в два раза больше величины отрезанного от одного поля участка. И только посмотрев на чертеж, он понял, что эта разница суть удвоенный участок (от одного поля он отрезан, это 5 гар, а к другому прирезан, еще 5 гар, вместе же как раз 10 гар). Как похожи эти задачи на то, что произошло у людей, стоявших перед ним. Правда, разница между полями не 10 гар, а 20, но ведь это неважно, все равно эта разница в два раза больше величины добавленного участка. И тут писца осенило. Мысленно воздал он почести великой лунной богине Иштар, подавшей ему знак, что делать: нужно разделить 60 гар пополам (как в той задаче, где поля были равные), а затем отнять от одного полученного при делении поля участок, равный половине 20 гар, и прирезать его к другому полю. И писец стал записывать решение первой в истории Вавилона задачи нового типа, не прибегая ни к алгебре, ни к геометрии, ни к методу ложного предположения.
Безусловно, эта история выдумана с начала до конца, и, конечно, это очередная реконструкция, но обратите внимание на ее достоинства. Я не ссылался на возможности современной математики и все, что предположил, можно документально подтвердить и обосновать. Все перечисленные мной задачи действительно решались на определенном этапе развития вавилонской математики, решались тысячами, тиражировались тысячами тысяч в школах писцов, причем в самых разнообразных последовательностях и сочетаниях. Среди таких последовательно решенных (как правило, в учебных целях) задач при огромном потоке решений вполне могли встречаться и такие подборки задач, которые обеспечивали построение решений новых задач. Чертежи с числами и алгоритмы решения учебных задач (случайно, а в дальнейшем специально подобранные) облегчали отождествление уже решенных задач с условиями новых. В работе (61) я показал, что подобным же способом были построены таблицы пифагорейских троек (чисел 3, 4, 5; 5, 12, 13; 8, 15, 17 и т. д., для которых была справедлива теорема Пифагора) и решен ряд других задач.
Предложенная реконструкция заставляет пересмотреть многие представления о характере шумеро-вавилонской математики. Во-первых, получается, что вавилонские математики пользовались вполне естественным (если иметь в виду уровень развития их практики) языком, который образовывали простейшие алгоритмы вычисления полей и поясняющие их чертежи с числами. Во-вторых, никаких уравнений они не знали и тем более не знали способов их преобразования. В-третьих, создавая решения задач, вавилонские математики не проводили логических умозаключений; все, что от них требовалось в плане мышления, – сравнить между собой условие новой задачи с решениями специально или случайно подобранных задач. Конечно, это сравнение не было простым, оно включало в себя, с одной стороны, сравнение чертежей полей, с другой – сравнение чисел, фиксирующих размеры полей или их элементов. Кроме того, необходимо было путем вычислений связывать те или иные элементы полей или величины их площадей (например, деля одну величину на другую, выяснять, что одно поле в два раза больше другого). Однако все эти мыслительные действия ничего общего не имеют как с геометрическими или алгебраическими преобразованиями уравнений, так и с логическими умозаключениями.
В данном параграфе фигурирует выражение «семиотическое производство». Что здесь имеется в виду? В своих работах я обращал внимание на то, что атрибутивные и эмпирические знания, получавшиеся в древнем семиотическом производстве, фиксирующие характеристики определенных объектов (полей, хозяйственных сооружений, траекторий движения звезд и планет по небу и т. п.), а также связи между ними, заданные операциями со знаками (числами или величинами), проверялись на соответствие действительности только на основе практики, носившей сугубо хозяйственный или сакральный характер. Другими словами, закреплялись только те знаки и знания, которые отвечали хозяйственной или сакральной практике, обеспечивая решение возникавших в ней задач (например, позволяя подсчитывать и суммировать большие совокупности, восстанавливать поля той же площади, определять время появления первых звезд, планет и затмений; к небесным явлениям, т. е. богам, как правило, приурочивались хозяйственные работы, вообще встречи с богами для совместной деятельности). Другой важной особенностью является безличный и сакральный характер знаний: они понимались как мудрость, считались принадлежащими богам, которые лишь поделились с жрецами этими знаниями.
Читать дальшеИнтервал:
Закладка: