Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]

Тут можно читать онлайн Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - бесплатно ознакомительный отрывок. Жанр: sci_popular, издательство Альпина нон-фикшн, год 2017. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте]
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-9614-4944-0
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Коллектив авторов - Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] краткое содержание

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Что вы думаете о машинах, которые думают?» На этот вопрос — и на другие вопросы, вытекающие из него, — отвечают ученые и популяризаторы науки, инженеры и философы, писатели-фантасты и прочие люди искусства — без малого две сотни интеллектуалов. Российскому читателю многие из них хорошо известны: Стивен Пинкер, Лоуренс Краусс, Фрэнк Вильчек, Роберт Сапольски, Мартин Рис, Шон Кэрролл, Ник Бостром, Мартин Селигман, Майкл Шермер, Дэниел Деннет, Марио Ливио, Дэниел Эверетт, Джон Маркофф, Эрик Тополь, Сэт Ллойд, Фримен Дайсон, Карло Ровелли… Их взгляды на предмет порой радикально различаются, кто-то считает искусственный интеллект благом, кто-то — злом, кто-то — нашим неизбежным будущим, кто-то — вздором, а кто-то — уже существующей реальностью. Такое многообразие мнений поможет читателю составить целостное и всестороннее представление о проблеме.

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать онлайн бесплатно ознакомительный отрывок

Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Давайте сначала рассмотрим досадно вездесущие собеседования, считающиеся важным, часто самым важным фактором, определяющим, кого именно возьмут на работу. В школе бизнеса имени Бута при Чикагском университете, где я преподаю, рекрутеры посвящают бесчисленные часы собеседованиям со студентами из кампуса и в результате отбирают тех немногих, кто получит приглашение встретиться с работодателем, чтобы пройти через еще одну серию продолжительных собеседований. Однако проведенные исследования показывают, что собеседования практически бесполезны в плане прогнозирования того, насколько хорошо кандидат будет справляться со своей работой.

В сравнении со статистической моделью, основанной на объективных показателях, таких как оценки за учебные курсы, имеющие отношение к рассматриваемой работе, собеседования преимущественно замутняют картину и привносят фактор предубежденности. (Статистические модели не отдают предпочтения определенной альма-матер или этнической группе, а также не обращают внимания на привлекательную внешность.)

Эти факты известны уже более четырех десятилетий, но методы найма почти не изменились. Причина проста: каждый из нас знает, что если мы проводим собеседование, то мы много узнаем о кандидате. Вполне возможно, что другие люди тут не очень хорошо справляются, но я-то не такой! Эта иллюзия, находящаяся в прямом противоречии с практическими исследованиями, означает, что мы так и будем выбирать сотрудников по старинке, как всегда делали. Мы их оцениваем, сравниваем с собой.

Одна из областей, где есть кое-какой прогресс в плане более научного подхода к подбору кандидатов для работы, — это спорт, что отражено в книге и фильме Майкла Льюиса «Человек, который изменил все» (Moneyball). Однако было бы ошибкой думать, что в том, как в спорте принимаются решения, произошла революция. Действительно, большинство профессиональных команд теперь нанимают специалистов по анализу данных, чтобы те помогали им оценивать потенциальных игроков, улучшать методы тренировки и разрабатывать стратегии. Но окончательные решения о том, какого кандидата выбрать, с кем подписать контракт и кого выпускать на поле, все еще принимают тренеры и менеджеры — скорее интуитивно, а не полагаясь на мнение штатных зубрил.

В качестве примера можно рассмотреть американский футбол. Дэвид Ромер, профессор экономики в Беркли, в 2006 году опубликовал работу, демонстрирующую, что команды слишком часто решают сделать пант, вместо того чтобы «идти в проход» и получить первый даун или очко {13} 13 David Romer, «Do Firms Maximize? Evidence from Professional Football», Jour. Political Econ. 114, no. 2 (2006): 340–65. [Дэвид Ромер. Фирмы максимизируют прибыль? Данные из профессионального футбола] . С момента публикации работы анализ Ромера был не раз воспроизведен и дополнен более точными данными, а выводы подтвердились. У New York Times даже есть онлайн-бот, который вычисляет оптимальную стратегию каждый раз, когда команда сталкивается с ситуацией четвертого дауна.

Но как это восприняли тренеры? А никак! Со времени публикации работы Ромера частота «проходов» после четвертого дауна не поменялась. Тренеры, которых нанимают владельцы команд, основываясь отчасти на собеседованиях, все еще принимают решения так же, как делали всегда.

Так что простите мне то, что я не теряю сон от страха из-за компьютеров, которые могут захватить мир. Не все сразу, давайте будем действовать постепенно и посмотрим, готовы ли мы доверить машинам принятие простых решений, с которыми те уже справляются лучше людей.

Я вижу развитие симбиоза

Скотт Дрейвз
Художник-программист; создатель Electric Sheep [115] Искусственный интеллект, предназначенный для создания картин и анимации. — Прим. пер.

Я полагаю, что мыслящие машины — самая интересная тема для раздумий. Почему? Потому что у этого феномена могут быть значительные последствия. Даже космические.

«Мыслящие машины» уже давно с нами. Это можно понимать по-разному, в зависимости от того, с какого слова начать. Давайте начнем со слова «машины», под которым сегодня мы обычно подразумеваем компьютеры. Компьютеры поначалу были ну очень даже механистичны. Но они становятся все более утонченными. Уже в 1980-х годах они совершали кое-какие замечательные трюки с экспертными системами и базами данных. Сегодня мы уже прошли ту точку, в которой могли в деталях объяснить, как распознавание речи и естественного языка позволяет вашему телефону отвечать на вопросы ребенка. Фраза «магическим образом» сегодня едва ли гипербола. Но мышление ли это на самом деле? Еще нет, но это хорошее начало, и движение продолжается. Цель и правда выглядит очень далекой. Вместо того чтобы рассматривать наш подъем шаг за шагом, давайте взглянем на то, что ждет нас на вершине. Что-нибудь может остановить наше развитие?

Будущее микроэлектронных технологий неясно. Закон Мура пока что работал на нас, провел через несколько опасных моментов, но его дни подходят к концу. До сих пор новые технологии появлялись всегда вовремя, чтобы поддержать экспоненциальный рост вычислительной мощности по расписанию, но это не стоит воспринимать как данность. Быть может, следующий скачок окажется очень сложным и на его подготовку уйдет 50 лет. Или он вообще никогда не случится, хотя мы всегда можем повысить мощность за счет параллельного использования дополнительных чипов. Расписание — это интересный вопрос, но он меркнет в сравнении с размышлениями о пункте назначения.

Теперь рассмотрим слово «мыслить». Мыслящие машины есть давно — это мы сами. Биологические мозги думают уже миллионы лет. Мозг подчиняется законам физики, которые представляют собой механический набор уравнений. В принципе, хороший физический симулятор мог бы, хоть и очень медленно, смоделировать мозг и его окружение. Этот виртуальный мозг определенно был бы мыслящей машиной.

Остается только один вопрос: сколько нужно физики, чтобы такая симуляция заработала? Классической физики, электродинамики и химии хватит? Потребуется ли квантовая логика (или какая-то еще)? Консенсус однозначно на стороне представления о том, что классической физики окажется достаточно (идея про «Новый ум короля» [116] «Новый ум короля. О компьютерах, мышлении и законах физики» (The Emperor's New Mind: Concerning Computers, Minds and The Laws of Physics) — книга британского физика Роджера Пенроуза, вышедшая в 1989 году. В ней Пенроуз утверждает, что человеческое сознание нельзя смоделировать с помощью обычного компьютера, поскольку оно не алгоритмично, однако его природу можно понять при помощи аппарата квантовой механики. — Прим. ред. была отвергнута). Поэтому я думаю о своем мозге и теле как о гигантской машине, составленной из октильона молекул: много-много магнитных деталей детского конструктора, поведение которых хорошо известно и может быть смоделировано. Есть веские причины полагать, что статистическая аппроксимация физики даст такие же результаты. Но опять же это относится только к расписанию, а не к пункту назначения. Важный вопрос: как на основе такой сложной машины возникают мышление и сознание? Есть некая конструкция, некий мост, ведущий от цифрового и виртуального к аналоговому, органическому и реальному?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте] отзывы


Отзывы читателей о книге Что мы думаем о машинах, которые думают [Ведущие мировые ученые об искусственном интеллекте], автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x