Carlos Casado - Вначале была аксиома. Гильберт. Основания математики

Тут можно читать онлайн Carlos Casado - Вначале была аксиома. Гильберт. Основания математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вначале была аксиома. Гильберт. Основания математики
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Carlos Casado - Вначале была аксиома. Гильберт. Основания математики краткое содержание

Вначале была аксиома. Гильберт. Основания математики - описание и краткое содержание, автор Carlos Casado, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Вначале была аксиома. Гильберт. Основания математики - читать онлайн бесплатно полную версию (весь текст целиком)

Вначале была аксиома. Гильберт. Основания математики - читать книгу онлайн бесплатно, автор Carlos Casado
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если бы я проснулся, проспав тысячу лет, то в первую очередь спросил бы: доказали ли гипотезу Римана?

Давид Гильберт

Не так давно историк математики Тиле Рюдигер в одной из тетрадей Гильберта обнаружил, что тот хотел добавить еще одну проблему (24), которую в итоге отверг. Проблема состояла в определении критерия простоты или доказательства максимальной простоты некоторых доказательств. Гильберт намеревался развить общую теорию о методах доказательства в математике. Как ни парадоксально, через несколько лет он сам основал (см. главу 5) теорию доказательств.

Однако в списке был ряд важных упущений: несколько путей, по которым он не пошел. Матричная алгебра, статистика, логика или прикладная математика, бурно развивавшиеся в конце века, наряду с зарождающимися топологией, теорией меры и функциональным анализом для Гильберта интереса не представляли. Точно так же проблема трех тел и последняя теорема Ферма были упомянуты, но не предложены в качестве открытых проблем математики будущего.

В следующей таблице показано современное состояние 23 проблем Гильберта.
Проблема Описание Состояние
1 Континуум - гипотеза Курт Гёдель (1938) и Пол Коэн (1963) доказали ее неразрешимость как истинную или ложную на основе стандартного набора аксиом теории множеств
2 Непротиворечивость аксиом арифметики Курт Гёдель (1931) доказал, что установление неп роти вореч и вости арифметики является формально неразрешимой проблемой
3 Определение понятия объема без применения анализа Опровергнута Максом Деном (1902)
4 Перечисление всех метрик, прямые линии которых являются геодезическими Положительно решена Алексеем Погореловым (1975)
5 Дифференцируются ли непрерывные группы автоматически? Положительно решена Эндрю Глизоном (1952)
6 Математическое изложение аксиом физики Частично решена:
— механика: Георг Гамель (1909);
— термодинамика: Константин Каратеодори (1909);
— специальная теория относительности: Альфред Робб (1914) и Константин Каратеодори (1923);
— квантовая механика: Джон фон Нейман (1932);
— теория вероятностей: Андрей Колмогоров (1933)
7 Является ли a bтрансцендентным, если a≠0,1 алгебраическое и b иррациональное алгебраическое? Решена независимо Александром Гельфондом и Теодором Шнайдером (1934)
8 Гипотеза Римана и гипотеза Гольдбаха Не решена
9 Доказательство наиболее общего закона взаимности в любом числовом поле Решена Эмилем Артином (1923)
10 Найти универсальный алгоритм диофантовых уравнений Отрицательно решена Матиясевичем (1970)
Проблема Описание Состояние
11 Решение квадратичных форм с алгебраическими числовыми коэффициентами Частично решена Хельмутом Хассе (1923) и Карлом Зигелем (1930)
12 Распространение теоремы Кронекера Не решена
13 Решение общего уравнения седьмой степени с помощью функций, зависящих только от двух переменных Отрицательно решена Арнольдом и Колмогоровым (1957)
14 Доказательство конечности некоторых полных систем функций Отрицательно решена через контрпример Масаеси Нагатой (1959)
15 Строгое обоснование исчислительной геометрии Шуберта Отрицательно решена Бартелем ван дер Варденом (1930)
16 Топология алгебраических кривых и поверхностей Не решена
17 Представление определенных форм в виде квадратов Решена положительно Эмилем Артином (1927) и Георгом Крайзелем (1957)
18 Гипотеза Кеплера Решена Томасом Хейлсом (2005)
19 Всегда ли решения регулярных задач вариационного исчисления аналитические? Утвердительно решена Сергеем Бернштейном (1904)
20 Всели задачи вариационного исчисления с определенными граничными условиями имеют решение? Решена в течение XX века
21 Доказательство существования линейных дифференциальных уравнений с заданной группой монодромии Отрицательно решена Дмитрием Аносовым и Андреем Болибрухом (1989)
22 Униформизация аналитических зависимостей с помощью автоморфных функций Решена независимо Паулем Кёбе и Анри Пуанкаре (1907)
23 Развитие методов вариационного исчисления Решена в течение XX века
18 ПРОБЛЕМ СМЕЙЛА И 7 ПРОБЛЕМ ТЫСЯЧЕЛЕТИЯ

В 1992 году Международный математический союз принял на себя инициативу связать лекцию Гильберта 1900 года с современным состоянием математики. Несмотря на огромные достижения математики XX века, дюжины примечательных проблем еще ждут своего решения. В 2000 году лауреат Филдсовской премии Стивен Смейл (р. 1930) составил список из 18 проблем, актуальных в XXI веке. Первые три — это гипотеза Римана, гипотеза Пуанкаре (знаменитый топологический вопрос, поставленный в 1904 году) и проблема Р = NP (любая ли проблема, решаемая в экспоненциальном неполиномиальном времени, имеет альтернативное решение в полиномиальном времени?). Одновременно институт Клея назначил семь премий в один миллион долларов для каждой из обозначенных проблем тысячелетия. Некоторые из них новые, другие — старые знакомые, уже более 100 лет ожидающие решения. Среди этих задач, естественно, три указанные выше проблемы, а также проблема существования решений уравнений Навье — Стокса (которые описывают движение флюидов). В 2002 году российский математик Григорий Перельман (р. 1966) доказал одну из них — гипотезу Пуанкаре.

УЧИТЕЛЬ И УЧЕНИКИ

Сегодня, спустя более чем 100 лет, можно констатировать хорошие результаты: больше половины проблем решены, хотя некоторые решены довольно неожиданно. Часть из них все еще остаются открытыми (это случай проблемы 8 — гипотезы Римана, «звезды» списка) или частично открытыми (случай проблем И, 12 и 16). Проблемы, которые Гильберт определил для нового века, не остались без внимания, они заворожили несколько поколений математиков, породив настоящий поток исследовательских статей. Решить проблему Гильберта — задача, достойная уважения, способствующая карьере. Математик, решивший одну из этих проблем, занимал «почетное положение в математическом сообществе», говоря словами Германа Вейля (1885-1955) из некролога Гильберту.

Это был случай свершившегося пророчества. Несмотря на то что присутствующих на лекции Гильберта было не так много (доподлинно неизвестно, был ли там Пуанкаре, к которому отсылали некоторые из этих проблем), она не вызвала оживленной дискуссии (за исключением столкновения с Пеано, напомнившего Гильберту о работах итальянских математиков в области второй проблемы), репутация их автора и стоявшего за ним Гёттингенского центра сделали свое дело. Математическими проблемами будущего стали именно те, которые Гильберт обозначил в своей программе, потому что этому способствовала его харизма. Однако предложения Пуанкаре также исполнились: например, развитие функционального анализа, который стольким обязан Гильберту, шло параллельно развитию квантовой механики. И когда сошла на нет тенденция к абстракции и аксиоматическим структурам, характерная для начала XX века, произошел скачок прикладной математики (исследование операций, теория хаоса и так далее), который был знаком уважения французскому математику.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Carlos Casado читать все книги автора по порядку

Carlos Casado - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вначале была аксиома. Гильберт. Основания математики отзывы


Отзывы читателей о книге Вначале была аксиома. Гильберт. Основания математики, автор: Carlos Casado. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x