Carlos Casado - Вначале была аксиома. Гильберт. Основания математики

Тут можно читать онлайн Carlos Casado - Вначале была аксиома. Гильберт. Основания математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вначале была аксиома. Гильберт. Основания математики
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Carlos Casado - Вначале была аксиома. Гильберт. Основания математики краткое содержание

Вначале была аксиома. Гильберт. Основания математики - описание и краткое содержание, автор Carlos Casado, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Вначале была аксиома. Гильберт. Основания математики - читать онлайн бесплатно полную версию (весь текст целиком)

Вначале была аксиома. Гильберт. Основания математики - читать книгу онлайн бесплатно, автор Carlos Casado
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Специальная теория относительности, хотя и была чрезвычайно дерзкой с позиции физики, не требовала математики, неизвестной на тот момент физикам и лежавшей в основе работ Пуанкаре и Хендрика Лоренца (1853-1928). В своем озарении Эйнштейн применил не очень требовательную математику. Однако некоторые физики и математики посчитали, что столь радикальные физические и философские идеи должны быть подкреплены новыми математическими формулировками. И здесь вступил в игру старый товарищ Гильберта, Герман Минковский.

ГИПОТЕЗА ВАРИНГА

Как для Минковского, так и для Гильберта теория чисел была самым чудесным порождением человеческой мысли. В 1908 году, взяв перерыв в работе, чтобы поправить здоровье, Гильберт доказал гипотезу, предложенную британским математиком Эдуардом Варингом (1734-1798):

«Любое целое число представимо как сумма максимум девяти кубов; любое число можно представить в виде не более 19 четвертых степеней, и так далее». Другими словами, без каких- либо доказательств утверждалось, что для любой степени к существует некоторое минимальное число таких степеней (назовем его g(k), поскольку оно зависит от степени выбранного к), которое позволяет выразить любое число л в виде суммы ровно g(k) к-х степеней:

n =х 1 k+ х 2 k+ ... + x g(k) k.

В 1770 году Жозеф-Луи Лагранж доказал, что любое число — это сумма четырех квадратов, то есть что g(2) = 4. Но до Гильберта прогресса в этом вопросе не наблюдалось. Для некоторых конкретных значений k(k = 3, 4, 5, 6, 7 и 8) удалось ограничить значение g(k); так доказали, что g(4)≤53, но было еще далеко до доказательства, что для записи любого числа достаточно всего 19 четвертых степеней, то есть что g(4) = 19.

Эдуард Варинг Заслуженная премия Гильберт напрямую не оценивал значения - фото 23

Эдуард Варинг.

Заслуженная премия

Гильберт напрямую не оценивал значения g(k) (это было сделано в XX веке) и косвенно доказал, что функция g(k) четко определена, то есть для каждого к она принимает конечное значение (никогда не принимает бесконечных значений, из чего можно сделать вывод: всегда существует минимальное число степеней, необходимых для записи любого числа). Это достижение принесло ему в 1910 году премию Яноша Бойяи. Как член жюри Пуанкаре отдал должное работе немецкого математика не только потому, что она относилась к теории чисел, но и за широкий спектр затронутых в ней тем: инварианты, аксиоматические основания геометрии, принцип Дирихле и так далее. Он также оценил строгость и простоту примененных методов, в которых проявился талант Гильберта как преподавателя.

Друзья снова встретились в 1902 году. Гильберт отказался от кафедры в Берлине, чтобы остаться в Гёттингене, но добился должности для своего дорогого коллеги. Гёттинген в одночасье превратился в Мекку для математиков. Здесь жили сразу три пророка — Клейн, Гильберт и Минковский. С 1902 по 1909 год последние двое вместе читали несколько курсов по математической физике, в частности по электродинамике движущихся тел (сегодня известной как теория относительности). Минковский очень внимательно отнесся к пререлятивистским теориям Пуанкаре и Лоренца и сразу же откликнулся на подход Эйнштейна. Его очень удивило, что этот революционный подход принадлежит его бывшему ученику в Цюрихе, в математических знаниях которого он несколько сомневался.

Минковский рассматривал время как четвертое измерение. Между пространством и временем есть нерушимая связь, они формируют единое целое — пространство-время. Все, что у Эйнштейна казалось туманным, в псевдоевклидовом четырехмерном мире, который вообразил Минковский, становилось ясным. Это геометрическое обрамление способствовало распространению специальной теории относительности. Его воздействие было очень сильным, хотя его приняли не сразу (настораживал тот факт, что чтобы оперировать физическими понятиями, требовалось обращаться к геометрии с ее отрицательными векторами). Эйнштейну это показалось поверхностной эрудицией, и в ответ Гильберт возразил: «Любой мальчик на улицах Гёттингена понимает в четырехмерной геометрии больше, чем Эйнштейн». Минковский изложил свою позицию в нескольких лекциях 1908 года, но не дождался их публикации и не успел насладиться успехом: в 1909 году ученый умер в результате осложнений после операции по удалению аппендикса. Эта потеря усилила депрессию, в которой Гильберт находился из-за нервного истощения.

ЭЙНШТЕЙН, ГИЛЬБЕРТ И УРАВНЕНИЯ ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

С 1911 года Эйнштейн направлял усилия на то, чтобы включить гравитацию в свою специальную теорию относительности. Он искал общую теорию. Несмотря на природное упрямство, Эйнштейн признал пользу выкладок Минковского, ведь они навели его на мысль, что ключ находится в геометрии. То есть чтобы представить эффекты гравитации посредством геометрической структуры пространства-времени, объекты должны располагаться в предусмотренном виде. Нужно было геометризовать гравитацию.

Как простыня которую держат два человека деформируется когда на нее падает - фото 24

Как простыня, которую держат два человека, деформируется, когда на нее падает какой-то предмет, так и тело с огромной массой, как Земля, искривляет пространство- время вокруг него, и эта кривизна является причиной движений гравитационного притяжения, которое мы ощущаем на его поверхности.

В первых попытках математические выкладки Эйнштейна были довольно примитивными, и результаты их были незначительными. Если геометрия пространства-времени должна была зависеть от ее энергетико-материального содержания, то есть если гравитация должна была искривлять пространство-время, требовалась изменчивая геометрия, не заданная изначально и существенно отличающаяся от обычной. Знакомый математик указал Эйнштейну на классические работы Гаусса, Римана и в особенности на публикации Грегорио Риччи (1853-1925) и Туллио Леви-Чивита (1873-1941) в 1901 году. Последние содержали большую часть элементов геометрии Римана, необходимых для общей теории относительности. Вместе со своим другом Марселем Гроссманом (1878-1936) Эйнштейн начал изучать эти работы и обнаружил, что в них содержится необходимый ему математический аппарат, о котором он раньше не подозревал. В конце 1913 года физик и математик совместно опубликовали 28-страничную брошюру «Набросок обобщенной теории относительности и теории гравитации». Их целью было смоделировать Вселенную как геометрическую четырехмерную разновидность, снабженную римановой метрикой, или расстоянием, заданным тензором:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Carlos Casado читать все книги автора по порядку

Carlos Casado - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вначале была аксиома. Гильберт. Основания математики отзывы


Отзывы читателей о книге Вначале была аксиома. Гильберт. Основания математики, автор: Carlos Casado. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x