Николай Юшкин - Оптический флюорит
- Название:Оптический флюорит
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Юшкин - Оптический флюорит краткое содержание
Оптический флюорит - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Смесь флюоритовой шихты с PbF 2загружается в цилиндрический с коническим концом тигель, который устанавливается на подставке в верхней камере печи на 20—25 мм выше диафрагмы. Затем установка герметизируется и вакуумируется до рабочего давления в нагретой камере порядка 10 -3мм рт. ст. Материал в тигле расплавляется. При достижении температуры плавления тигель с расплавом из верхней «горячей» камеры печи опускается со скоростью около 10 мм/ч в нижнюю «холодную» камеру. При понижении температуры происходит образование зародыша и рост монокристалла. Выращенные монокристаллы медленно охлаждаются в верхней части печи. Затем кристаллы извлекаются из тигля легкими ударами по его дну.
Выращенные кристаллы обычно имеют большие внутренние напряжения, снятие которых производится отжигом. Кристалл выдерживается в специальной безградиентной печи при температуре около 1000—1100° С несколько часов и затем медленно со скоростью около 20 град/ч охлаждается до комнатной температуры.
Способом И. В. Степанова и П. П. Феофилова были получены монокристаллы фтористого кальция в виде цилиндрических буль диаметром 40 (вес 200 г) и 60 мм (вес 800 г), пригодные для изготовления деталей к оптическим приборам. Выращенные кристаллы обладали более высокой, по сравнению с природными, термической устойчивостью.
В дальнейшем метод Шамовского—Стокбаргера—Степанова несколько изменялся и совершенствовался, но в основе любых модификаций обязательно реализовались следующие главные условия: 1) создание глубокого вакуума (не менее 4—5∙10 -4мм рт. ст.) для исключения пирогидролиза фторида кальция и сохранения внутренней оснастки ростовой печи в ходе высокотемпературного кристаллизационного процесса; 2) использование специально отобранного и очищенного по определенной методике природного флюорита с добавлением в него специальных «раскислителей» — PbF 2или CdF 2(для удаления следов кислородсодержащих примесей); 3) обеспечение требуемых температурных градиентов в зоне роста кристаллов путем введения разделительной диафрагмы, использованием активно охлаждаемого штока и др., создание условий эффективного отбора скрытой теплоты кристаллизации, выделяемой в процессе выращивания кристаллов.
Метод Шамовского—Стокбаргера—Степанова стал главным и наиболее эффективным методом получения оптических монокристаллов флюорита. Он стал основой для разработки промышленных технологий во всех странах [Финкельштейн, 1966; Duyk, 1971; Leeder, 1979].
Метод Наккена—Киропулоса.Те технологические «находки», на основе которых развился метод Шамовского—Стокбаргера—Степанова, позволили получать оптические кристаллы флюорита и другими расплавными методами, например методом Наккена—Киропулоса.
Смысл этого метода заключается в том, что в тигель с расплавом, находящийся в печи, опускается кристаллодержатель с затравкой, который одновременно является холодильником, по которому осуществляется отвод тепла потоком воздуха или воды. Расплав все время поддерживается в состоянии несколько выше точки плавления данного вещества. Рост кристалла определяется особенностями теплообмена между кристаллоносцем, затравкой и расплавом. В таких условиях изотермы в расплаве располагаются концентрически вокруг относительно холодной затравки. Затравка медленно вращается и очень медленно, со скоростью несколько миллиметров в час, поднимается. Скорость роста определяется интенсивностью охлаждения затравки. Из-за особенностей теплоотвода растущий кристалл из полиэдрического постепенно превращается в полусферический. Диаметр затравки должен составлять около 1/4 диаметра выращиваемого кристалла.
Выращивание кристаллов флюорита должно обязательно проводиться в герметизированной аппаратуре в инертной атмосфере или в вакууме. Вместо вытягивания кристалла осуществляется медленное опускание вращающегося тигля с расплавом. Хороших результатов по выращиванию кристаллов флюорита этим методом добились, например, К. Рао и А. Смакула.
В условиях вакуума, используя для уменьшения потерь на испарение давление аргона в 250 мм рт. ст. и добавляя в шихту около 2% PbF 2, они получили совершенные флюоритовые були диаметром 20 мм и длиной 40 мм.
Метод зонной плавки.Этот метод для получения монокристаллов флюорита, легированных редкоземельными элементами, применил Г. Гуггенхейм [Вильке, 1977]. Он проводил зонную плавку флюорита в защитной фтористоводородной атмосфере в графитовой лодочке, проходящей через нагреватель со скоростью 2,5—30 см/ч. Были выращены кристаллы оптического качества размером 2,5×2,5×2,5 см.
Метод Чохральского.Кристаллы оптического флюорита теперь можно получать и методом Чохральского, который если и не так удобен, как метод Стокбаргера, но широко распространен и освоен многими лабораториями. Этот метод близок к методу Наккена—Киропулоса. Так же из расплава вытягивается затравка, но кристаллизация происходит не в самом расплаве, а в мениске расплава под затравкой, несколько возвышающемся над его уровнем. Одновременно с вытягиванием из расплава растущий монокристалл вращается вокруг вертикальной оси; в результате получаются симметричные цилиндрические кристаллы, довольно совершенные и очищенные от примесей. Очистка от примесей в процессе роста кристалла — это очень важное преимущество метода Чохральского.
Аппаратура для выращивания кристаллов методом Чохральского очень разнообразна. Для получения кристаллов оптического флюорита необходима вакуумная аппаратура. Флюоритовый расплав удерживается в молибденовых, платиновых, иридиевых или графитовых тиглях под защитой аргона или азота. Нагревание высокочастотное. Вытягивание затравки осуществляется со скоростью 1,2—15 см/ч, вращение затравки — 14—60 об/мин, вращение тигля — до 20 об/мин. Кристаллы получаются длиной 25—100 мм и диаметром 3—12 мм.
Первые искусственные кристаллы оптического флюорита были лучше природных, пожалуй, только прочностными характеристиками. Они обладали несколько большей твердостью, меньшей хрупкостью, не растрескивались и не распадались на мелкие осколки при 300—350° С, как природные, стойко выдерживали нагрев до температуры плавления флюорита.
Но по оптическим свойствам, т. е. по тем, которые и определяют уникальность флюорита как оптического материала, искусственные кристаллы значительно уступали природным. Они характеризовались более узким волновым диапазоном пропускания в УФ-области и даже в видимой части спектра имели полосы поглощения, выражающиеся в густой красно-фиолетовой окраске. Кристаллы, как правило, сильно люминесцировали. Неприятные следствия порождали пузырность, блочность кристаллов, остаточные напряжения и другие дефекты. Надо было найти способы устранения этих дефектов.
Читать дальшеИнтервал:
Закладка: