Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Тут можно читать онлайн Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство ООО «Де Агостини»,, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
  • Автор:
  • Жанр:
  • Издательство:
    ООО «Де Агостини»,
  • Год:
    2015
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. краткое содержание

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - описание и краткое содержание, автор Gustavo Pineiro, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.
Прим. OCR: Из-за особенностей отображения иврита в выражениях алеф(X) заменен на X.

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать онлайн бесплатно полную версию (весь текст целиком)

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - читать книгу онлайн бесплатно, автор Gustavo Pineiro
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако Вейерштрасс не говорил ни об отрезках, ни о прямоугольниках. Все свои идеи он выражал в числах и при помощи формул. Отрезок можно определить как часть числовой оси, ограниченной числами а и Ь. По Вейерштрассу же, отрезок является множеством (потенциально бесконечным) вещественных чисел между а и Ь геометрическое понятие отрезка не фигурировало даже в его рассуждениях. Понятие предела, например, которое мы применяем к отрезкам и прямоугольникам, Вейерштрасс выражал только в символах числовых операций.

Это объясняется тем, что в XIX веке исчисление все больше отдалялось от своей геометрической основы и в итоге окончательно от нее отошло. Это был длинный и трудный процесс, поскольку до этого классическая древнегреческая геометрия была неоспоримой основой любых математических рассуждений. В историю математики он вошел как «арифметизация исчисления» и заключался в том, что рассуждения геометрического типа (в них использовались статические объекты) заменялись на те, которые опирались исключительно на формулы и числа, в частности на вещественные числа (они позволяли рассуждать «в динамике», что было необходимо, например, в случае с понятием предела). Чтобы подвести под исчисление прочную логическую базу, необходимо было дать четкое определение вещественным числам, которые, в свою очередь, не имели никакого геометрического обоснования.

Что такое вещественные числа? Главное свойство вещественных чисел, которое их определяет и характеризует, заключается в том, что они заполняют всю числовую ось, то есть каждая точка на этой оси соответствует вещественному числу, а каждое вещественное число — точке на оси. Однако в конце XIX века это определение не было удовлетворительным, поскольку оно не должно было опираться на геометрические понятия. Но как можно донести мысль, что они заполняют всю числовую ось, не говоря ни о прямой, ни о точке? Этот вопрос был назван «проблемой континуума» (в то время континуумом называли числовую ось), и во второй половине XIX века он стал центральным вопросом исчисления.

В начале 1870-х годов в Галле Кантор, бывший учеником Вейерштрасса и, следовательно, тоже увлеченный проблемой логического обоснования исчисления, занялся поиском четкого определения вещественных чисел. Свои выводы он изложил в статье Ober die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen («Обобщение одной теоремы из теории тригонометрических рядов»), опубликованной в 1872 году в журнале Mathematische Annalen. До него Дедекинд тоже занимался тем же самым вопросом, что привело ученых к спору о первенстве.

Определение Кантора основано на понятии фундаментальной последовательности. Она состоит из вещественных чисел, и в ней по мере продвижения разница между любыми двумя членами, следующими друг за другом или нет, становится все меньше.

Возьмем, например, последовательность, образованную числами 3,1; 3,14; 3,141; 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535,... (в каждом последующем числе добавляется еще один знак числа π после запятой). С пятого числа все они начинаются с 3,14159... Это значит, что с пятого элемента разница между двумя членами последовательности (не важно, идут они один за другим или нет) начинается с пяти нулей после запятой, то есть она меньше 0,00001 (где только четыре нуля после запятой). Аналогично, начиная с шестого числа, разница между двумя членами последовательности меньше 0,000001; начиная с седьмого — меньше 0,0000001 и так далее.

Таким образом, 3,1; 3,14; 3,141; 3,1415; 3,14159; 3,141592; 3,1415926; 3,14159265; 3,141592653; 3,1415926535... - фундаментальная последовательность.

По мнению Кантора, особенность, определяющая вещественные числа, заключается в том, что каждой фундаментальной последовательности соответствует вещественное число, и наоборот, каждому вещественному числу соответствует фундаментальная последовательность. Другими словами, каждое вещественное число определяется фундаментальной последовательностью. В приведенном выше примере последовательность определяет, разумеется, число π.

Не следует путать все вышесказанное со взаимно однозначным соответствием между фундаментальными соответствиями и вещественными числами, потому что, хотя каждой последовательности соответствует только одно вещественное число, на самом деле разные последовательности могут соответствовать одному и тому же числу. Например, последовательность 3,1; 3,141; 3,14159; 3,1415926; 3,141592653; ..., которая получается, если прибавлять каждый раз по два знака числа π, — это другая последовательность по сравнению с предыдущей, но она тоже соответствует числу π.

Откуда же тогда нам известно, что существует число 0,110001000000000000000001000..., то есть число Лиувилля? Как мы можем убедиться, что это действительно вещественное число? (Кронекер, напомним, так не считал.) По Кантору, достаточно показать, что ему соответствует фундаментальная последовательность. В данном случае это 0,1; 0,11; 0,110001;... Существование этой фундаментальной последовательности гарантирует существование числа.

Теперь рассмотрим, как определение Кантора выражает мысль о том, что каждой точке числовой оси соответствует вещественное число.

Числа 0 и 1 наносятся на прямую произвольно, но после этого позиции вещественных чисел строго определены. Предположим, у нас есть точка Р, для которой мы не подобрали никакого соответствующего рационального числа (см. рисунок 13). Как мы можем доказать, что этой точке соответствует число (разумеется, рациональное)?

Возьмем последовательность точек, которые соответствуют рациональным точкам и постепенно все больше приближаются к Р. Они образуют фундаментальную последовательность, которой будет соответствовать вещественное число, и оно же будет соответствовать точке Р. На рисунке 13 представлен пример, где точка Р соответствует числу π.

РИС 13 Однако по мнению Кантора и тут мы подходим к идее бесконечности - фото 57

РИС. 13

Однако, по мнению Кантора (и тут мы подходим к идее бесконечности), еще одним фундаментальным свойством континуума является тот факт, что он несчетен (множество счетно, если эквивалентно натуральным числам). В серии из шести статей, опубликованных с 1879 по 1882 год в Mathematische Annalen, среди прочих вопросов о бесконечных множествах он рассмотрел альтернативные определения континуума, в которых несчетность являлась одной из его основных характеристик.

Тот факт, что точки отрезка образуют несчетное множество, позволяет решить парадокс Аристотеля. Если отрезок состоит из точек, то, поскольку у каждой точки нулевая длина, общая длина отрезка должна составить 0 + 0 + 0 + 0 + ... = 0. Сколько нулей мы складываем? Ответ: бесконечное количество нулей; но какова мощность этой бесконечности?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Gustavo Pineiro читать все книги автора по порядку

Gustavo Pineiro - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. отзывы


Отзывы читателей о книге Бесчисленное поддается подсчету. Кантор. Бесконечность в математике., автор: Gustavo Pineiro. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x