Чарльз Сейфе - Ноль: биография опасной идеи

Тут можно читать онлайн Чарльз Сейфе - Ноль: биография опасной идеи - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство АСТ, год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Ноль: биография опасной идеи
  • Автор:
  • Жанр:
  • Издательство:
    АСТ
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-17-083294-1
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Сейфе - Ноль: биография опасной идеи краткое содержание

Ноль: биография опасной идеи - описание и краткое содержание, автор Чарльз Сейфе, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга — история цифры 0, одного из самых необычных изобретений человечества. Споры вокруг этого невинного с виду круглого значка потрясали самые основы науки и религии, не раз приводили к войнам. Легендарные мыслители, от Пифагора до Эйнштейна, пытались разгадать тайну ноля. Древние календари и последние достижения астрофизики, вавилонские глиняные таблички и поиски «теории всего» — обо всем этом в книге «Ноль: биография опасной идеи». Это книга для каждого, кого интересует история математики и культуры, передовые идеи современной науки.

Ноль: биография опасной идеи - читать онлайн бесплатно полную версию (весь текст целиком)

Ноль: биография опасной идеи - читать книгу онлайн бесплатно, автор Чарльз Сейфе
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Линейное уравнение вроде 4x — 12 = 0 решить чрезвычайно легко, и проблемы такого рода не занимали алгебраистов надолго. Они вскоре обратились к более трудным проблемам — квадратным уравнениям, начинавшимся с выражения x 2, таким как x 2— 1 = 0. Квадратные уравнения сложнее линейных, кроме всего прочего, они имеют два различных корня. Например, уравнение x 2— 1 = 0 имеет два решения: 1 и –1. (Подставьте –1 или 1 в уравнение вместо x, и вы увидите, что получится.) Любое из этих решений работает, поскольку, как выяснилось, выражение x 2— 1 распадается на ( x — 1)( x + 1), делая ясным, что если x равен +1 или –1, x 2— 1 делается равным нолю.

Хотя квадратные уравнения более сложны, чем линейные, существует простой способ нахождения корней квадратного уравнения. Знаменитая формула, венчающая изучение алгебры в школе, дает значения корней уравнения ax 2+ bx + c = 0: x = (–b ± √(b 2— 4ac) / 2a. Знак «+» дает нам один корень, а знак «–» дает другой. Квадратичная формула была известна не одно столетие; математик IX века аль-Хорезми знал, как решить почти любое квадратное уравнение, хотя, по-видимому, не рассматривал как корни отрицательные числа. Вскоре после него алгебраисты научились принимать отрицательные числа за правомерные решения уравнений. С мнимыми числами, впрочем, дело обстояло несколько иначе.

Мнимые числа никогда не появлялись в линейных уравнениях, но начали возникать в квадратных. Рассмотрим уравнение х 2+ 1 = 0. Ни одно число явно не удовлетворяет этому уравнению: подстановка –1; 3; –750; 235,23 или любого другого положительного или отрицательного числа не дает правильного ответа. Выражение просто не желает разлагаться. Хуже того, когда вы попытаетесь использовать формулу, вы получите два глупо выглядящих ответа: + √–1 и –√–1.

Эти выражения, похоже, не имеют смысла. Индийский математик Бхаскара писал в XII веке, что «не существует квадратного корня из отрицательного числа, потому что отрицательное число не является квадратом». Бхаскара и другие имели в виду, что когда вы возводите в квадрат положительное число, вы получаете положительное число: например, дважды два равно четырем. Когда вы возводите в квадрат отрицательное число, вы все равно получаете число положительное: –2, умноженное на –2, все равно дает 4. Когда вы возводите в квадрат ноль, вы получаете ноль. Положительные числа, отрицательные числа и ноль все дают вам неотрицательные квадраты, и эти три возможности охватывают всю числовую ось. Это значит, что не существует числа на числовой оси, которое при возведении его в квадрат давало бы отрицательное число. Квадратный корень из отрицательного числа представлялся смешной концепцией.

Декарт полагал, что эти числа еще хуже, чем отрицательные, он придумал презрительное наименование для квадратных корней из отрицательных чисел: мнимые числа. Название прижилось, и со временем символ для корня квадратного из –1 стал обозначаться как i.

Алгебраисты i обожали, а почти все остальные ненавидели. Это был прекрасный инструмент для решения полиномов — выражений типа x 3+ 3 x + 1, куда входили разные степени x . На самом деле стоит включить i в область чисел, и любой полином делается решаемым; х 2+ 1 неожиданно разлагается на ( x — i ) ( x + i ), и корнями уравнения оказываются +i и –i . Кубические полиномы типа x 3— x 2+ x — 1 разлагаются на три сомножителя, такие как ( x — 1)( x + i ) ( x — i ). Выражения четвертой степени, первый член которых имеет вид x 4, и пятой степени — с первым членом вида x 5 — разлагаются соответственно на четыре и пять сомножителей. Все полиномы степени n — имеющие член вида x n — разлагаются на n отдельных сомножителей. Это основная теорема алгебры.

Уже в XVI веке математики использовали числа, включающие i: так называемые комплексные числа — для решения кубических уравнений и уравнений четвертой степени. Хотя многие математики рассматривали комплексные числа как удобную фикцию, другие видели в них Бога.

Лейбниц полагал, что i — странная смесь существования и несуществования, что-то вроде гибрида между 1 (Богом) и 0 (пустотой) в его бинарной схеме. Лейбниц уподоблял i Святому Духу: оба обладают эфемерным и едва ли материальным существованием. Однако даже Лейбниц не осознавал того, что i в конце концов откроет связь между нолем и бесконечностью. Потребовалось два важных открытия в математике, прежде чем была открыта истинная зависимость.

Мнение и опровержение

Нельзя не увидеть, с какой простотой эти концепции ведут к свойствам, уже известным, и к бесконечному множеству других, которые обычная геометрия с легкостью объяснить не может.

Жан-Виктор Понселе

Первое открытие — проективная геометрия — родилось в суматохе войны. В 1700-е годы Франция, Англия, Австрия, Пруссия, Испания, Нидерланды и другие государства соперничали на европейской арене. Союзы снова и снова возникали и распадались, происходили территориальные стычки из-за колоний, страны стремились к господству в торговле с Новым Светом. Всю первую половину XVIII столетия Франция, Англия и другие страны враждовали, и примерно через четверть века после смерти Ньютона разразилась полномасштабная война. Франция, Австрия, Испания и Россия противостояли Англии и Пруссии.

В 1763 году Франция капитулировала, и Семилетняя война (официальному ее объявлению предшествовали два года сражений) закончилась. Победа сделала Англию преобладающей силой в мире, но далось это дорогой ценой. И Франция, и Англия были истощены и в долгах, следствием этого для обеих стран стали революционные потрясения. Немногим более чем через десятилетие после окончания Семилетней войны началась война за независимость американских колоний, лишившая Англию ее богатейших заморских владений. В 1789 году, как раз когда Джордж Вашингтон возглавил вновь образованные Соединенные Штаты, началась Французская революция. Через четыре года революционеры обезглавили короля Франции.

Математик Гаспар Монж подписал постановление революционного правительства о казни короля. Монж был превосходным геометром, специализировавшимся в стереометрии. Его заслугой было то, как архитекторы и инженеры изображали здания и машины: они создавали проекции сооружений на горизонтальную и вертикальную плоскости, сохраняя таким образом всю информацию, необходимую для создания объекта. Работы Монжа были так важны для армии, что значительная их часть была засекречена сначала революционным, а затем пришедшим ему на смену наполеоновским правительством.

Жан-Виктор Понселе был учеником Монжа, осваивавшим трехмерную геометрию в качестве инженера наполеоновской армии. К своему несчастью, Понселе оказался в армии, как раз когда Наполеон в 1812 году вступил в войну с Россией.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Сейфе читать все книги автора по порядку

Чарльз Сейфе - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Ноль: биография опасной идеи отзывы


Отзывы читателей о книге Ноль: биография опасной идеи, автор: Чарльз Сейфе. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x