Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Название:Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2012
- Город:Москва
- ISBN:978-5-389-01770-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики краткое содержание
Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На самом деле бросать вызов стандартной мудрости — лейтмотив всей его жизни, это именно то, что он с успехом делает вновь и вновь. И он полагает, что у сообразительных математиков шансов на выигрыш всегда больше, чем шансов на проигрыш.
Я поинтересовался также, помогло ли ему то, что он так хорошо умеет оценивать вероятности, в тех ситуациях, когда руководствоваться интуицией противопоказано. Например, становился ли он когда-либо жертвой «заблуждения игрока»?
— Я считаю, что довольно неплохо научился говорить «нет» — хотя это и потребовало кое-какого времени. Вначале, когда я только начинал разбираться в акциях, мое обучение оказалось довольно дорогостоящим. Я был склонен принимать решения, действуя не вполне рационально.
Я спросил его, играл ли он когда-либо в лотерею.
— Вы хотите спросить, делал ли я когда-нибудь невыгодные ставки?
— Наверное, — сказал я, — вы никогда такого не делали.
— Всякое бывало. Знаете, иногда, время от времени, подобные вещи делать приходится. Представьте себе, что все ценное, что у вас есть, — это ваш дом. Страховать свой дом — невыгодно в смысле математического ожидания, но, по всей видимости, весьма благоразумно в смысле долгосрочного выживания.
— Так что, — спросил я, — вы все-таки застраховали свой дом?
Торп ненадолго замолчал.
— Да. — Он замялся, потому что прикидывал величину своего состояния. — Если вы достаточно богаты, вам нет необходимости страховать несущественное имущество, — объяснил он. — Например, если вы миллиардер, а ваш дом стоит миллион долларов, то не важно, застрахуете вы его или нет, по крайней мере с точки зрения критерия Келли. Вам нет нужды защищать себя от этой сравнительно небольшой потери. Выгоднее оставить эти деньги себе и самому вложить их во что-нибудь получше. Кстати, кажется, я все-таки застраховал свои дома.
Я когда-то видел статью, где упоминалось, что Торп собирается заморозить свое тело после смерти. Я сказал ему, что это смахивает на азартную игру — и к тому же выглядит очень по-калифорнийски.
— Ну, как говорит один мой друг-фантаст, «Другой игры у нас для вас нет».
Глава 10
Все нормально
Некоторое время назад я приобрел электронные кухонные весы. Они состояли из стеклянной платформочки и «легкого в использовании голубого дисплея с задней подсветкой». Покупка эта отнюдь не была симптомом овладевшего мною желания готовить изысканные десерты. Равным образом не рассчитывал я и на частые посещения моей квартиры местными наркоторговцами. Просто меня заинтересовал процесс взвешивания. Вынув весы из коробки, я тут же отправился в ближайшую булочную — «Греггс» — и купил там багет. Взвесив его, я выяснил, что его вес составляет 391 грамм. На следующий день я снова отправился в ту же булочную и купил еще один багет. Этот оказался чуть тяжелее — 398 граммов. «Греггс» — это известная британская сеть, в которую входит более тысячи магазинов, где вы можете выпить чашку чаю и купить сэндвич с колбасой или булочку, покрытую сахарной глазурью. Однако меня интересовали только багеты. Третий, купленный в «Греггсе» багет весил 399 граммов. Мне уже изрядно надоело поглощать в день по целому багету, однако я продолжал ежедневную процедуру взвешивания. Четвертый багет оказался гигантом: 403 грамма. Я прикидывал даже, не повесить ли его на стену, как чучело рекордно большой рыбы. Ведь вес багета, продолжал размышлять я, не должен постоянно увеличиваться. Так и случилось: пятый весил жалкие 384 грамма.
В XVI и XVII веках Западную Европу охватила страсть к сбору всевозможных данных. Такие измерительные средства, как термометр, барометр и курвиметр — колесико, позволяющее засекать пройденное вдоль дороги расстояние, — были изобретены именно тогда, и их использование представляло собой восхитительное новшество. Не последнюю роль сыграло и то, что арабские числительные, обеспечивавшие эффективные обозначения для выражения результатов измерений, наконец полностью утвердились среди образованных классов. Возникший измерительный бум ознаменовал собой начало современной науки. Возможность описывать мир в количественных, а не качественных терминах полностью изменила наши взаимоотношения с природой. Числа, предоставив язык для научного исследования, внушили человеку уверенность, что он может добиться более глубокого понимания истинного устройства вещей.
Процедура измерения содержит в себе некий элемент веселой игры; и правда, мой ежедневный ритуал, состоящий в приобретении и взвешивании багета, оказался на удивление приятным занятием. От «Греггса» я возвращался почти бегом, сгорая от нетерпения, — сколько же граммов будет весить мой новый багет? И тут острота моих чувств ничуть не уступала жажде узнать счет футбольного матча или результаты финансовых торгов.
Мои ежедневные походы в булочную были обусловлены желанием составить таблицу распределения весов; после приобретения десятого багета я мог заключить, что самый малый вес составляет 380 граммов, самый большой — 410 граммов, а одно из значений — 403 грамма — повторялось. Разброс оказывается довольно широким, решил я. Все багеты куплены в одном и том же магазине, у всех одна и та же цена, и тем не менее самый тяжелый почти на 8 процентов тяжелее самого легкого!
Заинтригованный происходящим, я продолжал свои опыты. Несъеденный хлеб копился у меня на кухне, а я приходил в полный восторг, глядя, как веса распределялись по моей таблице. Хотя я и не мог предсказать, сколько будет весить следующий багет, было уже видно, что, без сомнения, в таблице присутствует некоторая закономерность. После сотого багета я прекратил эксперимент. К концу моих исследований каждое число между 379 граммами и 422 граммами, за исключением всего четырех, встречалось по крайней мере однажды.
Хотя я и приступил к реализации «хлебного» проекта по причинам математическим, я заметил, что тут имеют место и интересные психологические побочные эффекты. Перед взвешиванием каждого багета я внимательно его разглядывал и размышлял о его цвете, длине, толщине и текстуре, каковые довольно заметно варьировали от одного образца к другому. К самому себе я стал относиться как к знатоку багетов и временами даже говорил себе: «Ну, этот будет потяжелее», или «Сегодня, вне всякого сомнения, попался совершенно рядовой». При этом ошибался я столь же часто, как и оказывался прав. Тем не менее мой ограниченный опыт предсказателя нисколько не умалил мою веру в то, что я и в самом деле стал экспертом по оценке багетов. Видимо, это было нечто вроде того самообольщения, что свойственно знатокам спорта и финансов, которые хотя и не способны предсказывать случайные события, однако же с успехом строят на таких предсказаниях свою карьеру.
Читать дальшеИнтервал:
Закладка: