Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Название:Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2012
- Город:Москва
- ISBN:978-5-389-01770-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алекс Беллос - Алекс в стране чисел. Необычайное путешествие в волшебный мир математики краткое содержание
Алекс Беллос, известный журналист, многие годы работавший для «Guardian», написал замечательную книгу о математике. Книга эта для всех — и для тех, кто любит математику, и для тех, кто считает ее невероятно скучной и далекой от жизни. Беллосу удалось создать настоящий интеллектуальный коктейль, где есть и история, и философия, и религия, и конечно же математика — чудесные задачки, которые пока не решишь, не заснешь!
Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поверхность отрицательной кривизны называется гиперболической. Итак, поверхность чипса «Принглс» — гиперболическая. Впрочем, чипс — это всего лишь первый шаг к пониманию гиперболической геометрии, потому что у него есть край. Стоит только показать математику край, как он тут же захочет выйти за его пределы.

Можно посмотреть на это и другим способом. Проще всего представить себе поверхность нулевой кривизны без края: взять хотя бы ту страницу, что сейчас перед вами, разгладить ее, положить на стол, а потом продолжить по всем направлениям до бесконечности. Если бы мы жили на подобной поверхности и отправились на прогулку вдоль прямой линии в любом направлении, то никогда не добрались бы до края. Аналогичным образом, у нас есть очевидный пример поверхности положительной кривизны без края: это сфера. Если бы мы жили на сфере, то могли бы идти, никогда не останавливаясь и нигде не встречая края. (Конечно, мы и в самом деле живем на том, что представляет собой грубое приближение к сфере. Если бы Земля была совершенно гладкой, без всяких океанов и гор, встающих у нас на пути, и мы бы отправились в путь, в конце нашего путешествия мы снова вернулись бы к исходной точке — на самом деле мы двигались бы по окружности.)
А как же выглядит поверхность отрицательной кривизны без края? Она не может выглядеть как чипс, потому что если мы бы жили на чипсе «Принглс» размером с Землю и начали бы шагать в одном направлении, то в конце концов свалились бы за край. Математики долго гадали, как могла бы выглядеть «бескрайняя» гиперболическая поверхность — такая, по которой можно было бы путешествовать так далеко, как только захочется, и никогда не достигать края, но которая при этом не теряет своих гиперболических свойств. Понятно, что такая поверхность должна быть постоянно изогнута как чипс; так может, попробовать склеить ее из множества чипсов указанной формы? Увы, так у нас ничего не получится, потому что чипсы «Принглс» плохо состыковываются один с другим, а если заполнять образующиеся пустоты какой-то другой поверхностью, то эти добавленные области не будут гиперболическими. Другими словами, чипсы позволяют представить себе лишь локальные гиперболические свойства. Вещь, которую необычайно сложно представить — и которая требует напряжения мысли у даже самых блестящих математических умов, — это гиперболическая поверхность, которая продолжается без конца и без края.
Сферические и гиперболические поверхности — это математические противоположности. Покажем на примере, почему это так. Вырежем кусок из сферической поверхности — скажем, из баскетбольного мяча. Когда мы надавим на вырезанный кусок, чтобы он плотно прижался к земле и сделался плоским, он или растянется, или же разорвется просто потому, что в нем недостаточно материала для того, чтобы точно лечь на плоскость. А теперь представим себе резиновый чипс. Когда мы попробуем разложить его на плоскости, в нем окажется слишком много материала, и он сложится в складки. В то время как сферическая поверхность сворачивается, гиперболическая поверхность все время расширяется.
Вернемся к постулату о параллельных, который дает нам весьма точный способ классификации поверхностей на плоские, сферические и гиперболические. Для любой заданной прямой и точки вне ее:
На плоской поверхности имеется одна и только одна параллельная прямая, проходящая через эту точку.
На сферической поверхности нет ни одной параллельной линии, проходящей через эту точку [71] Можно было бы подумать, что линии постоянной широты параллельны экватору. Это не так, потому что линии широты (за исключением экватора) — это не прямые линии, а лишь прямые линии могут быть параллельны друг другу. Прямая — это кратчайшее расстояние между двумя точками; вот почему самолет, летящий из Нью-Йорка в Мадрид — при том, что эти две точки находятся на одной широте, — не летит по линии постоянной широты, а выбирает траекторию, которая на двумерной карте выглядит искривленной. ( Примеч. авт. )
.
На гиперболической поверхности имеется бесконечно много параллельных линий, проходящих через эту точку.
Поведение параллельных линий на плоской или сферической поверхности можно понять интуитивно, потому что нам легко представить себе плоскую поверхность, которая продолжается до бесконечности, и потому что все мы знаем, что такое сфера. Гораздо более сложная задача — понять поведение параллельных линий на гиперболической поверхности, потому что совершенно не ясно, как будет выглядеть такая поверхность, когда она продолжается до бесконечности. Параллельные линии в гиперболическом пространстве расходятся все дальше и дальше друг от друга. При этом, отклоняясь одна от другой, они не изгибаются, потому что, раз мы говорим о параллельных линиях, они должны быть прямыми, и тем не менее они расходятся из-за того, что гиперболическая поверхность постоянно искривляется, уходя сама от себя, а по мере того, как поверхность расширяется, между любыми двумя параллельными линиями появляется все больше и больше места. Да уж, такая картина кого угодно сведет с ума, и неудивительно, что, несмотря на всю свою гениальность, Риман не сумел придумать никакой поверхности, которая имела бы заданные свойства.
В последние десятилетия XIX века проблема представления гиперболической плоскости возбуждала многих математиков. Одна из таких попыток, предпринятая Анри Пуанкаре, захватила воображение голландского художника-графика М. К. Эшера (1898–1972). Его знаменитая серия гравюр «Предел круга» возникла как результат знакомства с предложенной французским математиком «дисковой моделью» гиперболической поверхности. На гравюре «Предел круга IV» двумерная вселенная помещена на круг (диск), где ангелы и демоны уменьшаются по мере приближения к краю. Сами ангелы и демоны, однако, и не подозревают о том, что уменьшаются, потому что по мере того, как они сами становятся меньше, то же самое происходит и с их измерительными приборами. С точки зрения обитателей диска все они сохраняют свои размеры, а их вселенная продолжается до бесконечности.

«Предел круга IV»
Изобретательность, воплощенная в дисковой модели Пуанкаре, состоит в том, что она восхитительным образом иллюстрирует, как параллельные линии ведут себя в гиперболическом пространстве. Прежде всего, нам надо определиться с тем, что такое прямая линия на диске. Аналогично тому, как прямые на сфере линии выглядят искривленными, когда их изображают на плоской карте (например, маршруты самолетов являются прямыми, но на карте выглядят искривленными), линии, являющиеся прямыми в диско-мире, также кажутся нам искривленными. Пуанкаре определил прямую линию на диске как сечение диска окружностью, которая входит в него под прямым углом.
Читать дальшеИнтервал:
Закладка: