Виолетта Гайденко - Западноевропейская наука в средние века: Общие принципы и учение о движении

Тут можно читать онлайн Виолетта Гайденко - Западноевропейская наука в средние века: Общие принципы и учение о движении - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Наука, год 1989. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Западноевропейская наука в средние века: Общие принципы и учение о движении
  • Автор:
  • Жанр:
  • Издательство:
    Наука
  • Год:
    1989
  • Город:
    М.
  • ISBN:
    5-02-007958-8
  • Рейтинг:
    5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Виолетта Гайденко - Западноевропейская наука в средние века: Общие принципы и учение о движении краткое содержание

Западноевропейская наука в средние века: Общие принципы и учение о движении - описание и краткое содержание, автор Виолетта Гайденко, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге на фоне широкого социокультурного контекста раскрывается процесс становления и развития научного знания в средние века. Подробно анализируется формирование стиля научного мышления, показывается преемственность науки средневековья и нового времени.

Для специалистов в области истории науки и культуры, логики и методологии научного познания.

Западноевропейская наука в средние века: Общие принципы и учение о движении - читать онлайн бесплатно полную версию (весь текст целиком)

Западноевропейская наука в средние века: Общие принципы и учение о движении - читать книгу онлайн бесплатно, автор Виолетта Гайденко
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как явствует из цитированного выше отрывка из трактата «De motu», если при равномерном (униформном) движении «скорость оценивается по максимальной линии, которую описывает точка», то величине intensio motus, характеризующей равноускоренное (униформно-дифформное) движение, также соответствует экстенсивная величина — широта (latitudo) движения. Ускорение в кинематике мертонцев — это не просто изменение скорости, т. е. чисто экстенсивная величина, измеряемая «расстоянием» между высшим и низшим градусом широты (их разностью); изменение скорости мыслится ими как движение по возрастающей или убывающей шкале градусов, совпадающей с максимальной широтой движения, т. е. как движение, происходящее с определенной скоростью. Intensio motus в случае равноускоренного движения является не чем иным, как скоростью пересчета градусов, заключенных между первым и конечным градусами всей широты. Уяснив это обстоятельство, мы легко теперь поймем, почему «в интенсии движения скорость оценивается по максимальной широте движения, приобретаемой в то или иное время».

В контексте анализа равноускоренного движения intensio motus рассматривается мертонцами, по сути дела, как интенсивная величина второго порядка, по отношению к которой широта движения, составленная из градусов скорости (интенсивных величин первого порядка) играет роль экстенсивной (производной от движения) величины: «генератор» (intensio motus) через равные промежутки времени, соответствующие продолжительности элементарного «Шага», отсчитывает градусы, возрастающие (или убывающие) в одинаковой пропорции. Каждой интенсивной величине первого порядка может быть сопоставлена некоторая абсолютно экстенсивная величина — путь, проходимый телом в равномерном движении с данным градусом широты. Мертонцы не умели вычислять этот путь для любого, произвольно взятого градуса. Единственный из всех градусов, характеризующих равноускоренное движение, которому они нашли способ сопоставить его экстенсивную меру, — это средний градус широты. Немного ниже будет подробно изложено, как они это сделали. Здесь же для нас важно подчеркнуть, что путем введения (неявной) иерархии интенсивных величин, выполняющих функцию «генераторов», мертонцы «выводят» сначала последовательности градусов, составляющих ту или иную широту движения, а затем последовательности отрезков пути, проходимых при равномерном движении, «раскладывая» тем самым движение по «порождающей модели».

Эта модель позволяет объяснить еще один важный пункт в учении мертонской школы о движении. И в античности, и в средние века доминировало определение равноускоренного движения, согласно которому возрастание величины скорости (или быстроты и медленности) в такого рода движении происходит прямо пропорционально проходимому расстоянию. Такого мнения придерживались Стратои, Александр Афродизийский, Симпликий, Альберт Саксонский, Марсилий Ингенский, а также (в своих ранних работах) и Галилей. Гораздо более плодотворной оказалась концепция, развитая в Мертон-колледже, в соответствии с которой отсчет градусов скорости велся по шкале времени. Историки физики согласны в том, что введениие временной шкалы для определения скорости в равноускоренном движении дало мощный толчок развитию кинематики, явившись одной из главных предпосылок создания математической концепции движения. Но мы не найдем у них ответа па вопрос, что побудило мертонцев отказаться от традиционного представления; переход к временной шкале оказывается ничем не обоснованным, результатом счастливого стечения обстоятельств. Но если допустить, что главной рабочей интуицией мертонцев, хотя и не высказанной ими в явной форме и, по-видимому, даже осознаваемой ими далеко не во всех деталях, является интуиция движения как процесса, состоящего в развертывании бесчисленного множества последовательностей, то станет очевидным, что они просто не могли иначе определить шкалу скоростей, характеризующих равноускоренное движение. Ибо если последовательность скоростей есть результат наличия intensio motus, т. е. начала, порождающего эту последовательность, то такое порождение может иметь место только во времени, которое составляет его необходимую предпосылку.

4.7. Мертонская теорема о среднем градусе скорости

Главным результатом математических вычислений, проводившихся в Мертон-колледже, были формулировка и доказательство фундаментальной кинематической теоремы, которая приравнивает (в отношении пути, пройденного за определенный отрезок времени) равноускоренное движение равномерному, скорость которого равна скорости равноускоренного движения в средний момент времени последнего. В современной символической записи мертонская теорема средней скорости будет выглядеть следующим образом:

1) S = ½ ∙ V f∙ t — для случая ускорения от состояния покоя;

2) S = (v 0+ (v f– v 0)/2)/t — для ускорения от начальной скорости v 0.

где S обозначает проходимое расстояние, v f— конечную скорость, a t — время ускорения.

Рассмотрим вначале доказательство Суайнсхеда, а затем доказательство Хейтсбери.

а) Доказательство Ричарда Суайнсхеда

Выше приводилось одно из мертонских доказательств теоремы о среднем градусе, принадлежащее Суайнсхеду. Доказательству в трактате Суайнсхеда предпосланы формулировка и разъяснение самой теоремы: «Всякая широта движения, равномерно приобретаемая или утрачиваемая, соответствует своему среднему градусу… Я говорю, что широта, которая приобретается, соответствует своему среднему градусу в том смысле, что ровно столько же будет пройдено посредством той широты, таким именно образом приобретаемой, сколько и посредством ее среднего градуса, если в продолжение всего (totum) времени движение будет происходить с тем средним градусом» [89]. Чтобы доказать это утверждение, Суайнсхед предлагает проделать мысленный эксперимент (излагая его рассуждение, мы постараемся воспроизвести основную идею, не следуя буквально способам ее выражения). Предположим, что тело x движется равноускоренно в течение времени t x и за это время его скорость возрастает от b до а градусов. Приращение скорости от b до а есть не что иное, как широта движения х. Пусть точно такая же широта движения «равномерно утрачивается» при равнозамедленном движении тела у за время t y(t x= t y). При этом предполагается, что движение у происходит с ускорением, равным (по абсолютной величине) ускорению x (точнее, Суайнсхед говорит не об ускорении, а о том, что а уменьшается и b возрастает при движении у и x равно быстро (equevelociter)). Последнее предположение реализуется в мысленном эксперименте в виде дополнительных требований, налагаемых на движение x и y: 1) x и y начинают двигаться одновременно;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виолетта Гайденко читать все книги автора по порядку

Виолетта Гайденко - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Западноевропейская наука в средние века: Общие принципы и учение о движении отзывы


Отзывы читателей о книге Западноевропейская наука в средние века: Общие принципы и учение о движении, автор: Виолетта Гайденко. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x