Мигуэль Сабадел - Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика

Тут можно читать онлайн Мигуэль Сабадел - Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_popular, издательство Де Агостини, год 2013. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика
  • Автор:
  • Жанр:
  • Издательство:
    Де Агостини
  • Год:
    2013
  • ISBN:
    2409-0069
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Мигуэль Сабадел - Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика краткое содержание

Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - описание и краткое содержание, автор Мигуэль Сабадел, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Ричард Фейнман считается не только одним из самых значительных физиков XX века, но и одной из самых завораживающих и уникальных фигур современной науки. Этот ученый внес огромный вклад в изучение квантовой электродинамики - основной области физики, исследующей взаимодействие излучения с веществом, а также электромагнитные взаимодействия заряженных частиц. Кроме того, он широко известен как преподаватель и популяризатор науки. Яркая личность Фейнмана и его сокрушительные суждения вызывали как восхищение, так и враждебность, но несомненно одно: современная физика не была бы такой, какой она является сегодня, без участия этого удивительного человека.

Прим. OCR: Врезки текста выделены жирным шрифтом. Символ "корень квадратный" заменен в тексте SQRT().

Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - читать онлайн бесплатно полную версию (весь текст целиком)

Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - читать книгу онлайн бесплатно, автор Мигуэль Сабадел
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Во всех наших знаниях о фундаментальной физике не существует важной идеи, которая не носила бы имени Гелл-Мана.

Заявление Фейнмана в знак уважения к работе Гелл-Мана

Гелл-Ман представил следующий аргумент: так как у сохраняется, частицы, созданные распадом, должны появиться в виде пар частица-античастицы с зарядами, равными по значению, но с противоположными знаками. Частицы были бы постоянные, так как создание не-странных частиц противоречило бы законам сохранения, при условии, что в процессе участвует сильное взаимодействие. Но если мы имеем дело со слабым взаимодействием, ответственным за распад нейтрона, то законы сохранения не действуют и частицы смогут распадаться. Кроме того, по той же причине их средний срок жизни будет более продолжительным — именно то, что мы и наблюдаем.

Гелл-Ман отдавал себе отчет, что квантовое число у могло в равной степени служить для классификации частиц. Чем оно больше, тем невероятней прогноз: частица К 0, или каон (нейтральный), должна иметь античастицу, отличную от нее. Это предположение было достаточно непривычным: до сих пор считалось, что античастицы нейтральных частиц, например фотона, тождественно совпадают со своей частицей. Когда выяснилось, что Гелл-Ман был прав, этот молодой физик, будущий лауреат Нобелевской премии, стал знаменитым. Следующий его шаг заключался в нарушении неписанной традиции именования новых частиц: он отождествил имя с квантовым номером, названным «странностью», и связанные частицы были названы «странными». Такое определение не пришлось по вкусу издателям журнала Physical Review Letters, которые исключили выражение «странные частицы» из названия статьи.

А в начале учебного года университет Калтех пригласил Гелл-Мана к себе, и тот согласился. Он устроился в кабинете, расположенном как раз над кабинетом Фейнмана. В возрасте 26 лет Гелл-Ман стал самым молодым профессором в истории университета. Общественное мнение сходилось на том, что в Калтехе тогда работали два лучших физика эпохи. При этом Гелл-Ман и Фейнман взаимно восхищались друг другом.

«Что мне всегда нравилось в Ричарде, так это отсутствие пафоса в его выступлениях. Я пресытился физиками-теоретиками, которые топили свою работу в математической лексике или выдумывали притязательные обозначения для того, что можно назвать довольно скромным вкладом в науку. Ричард излагал свои остроумные и оригинальные идеи, очень часто мощные, настолько просто, что его объяснения представлялись мне как сильный порыв свежего воздуха».

Иначе и быть не могло: они начали сотрудничать и могли часами вести дискуссии в своих кабинетах, занятые «обсуждением вопросов о космосе», как вспоминал об этом Марри впоследствии. Все-таки речь шла о союзе, основанном на несовместимости характеров: Гелл-Ман воплощал в себе образованного ученого, который неукоснительно и со строгостью судил других и их идеи и который всегда следил за последними научными открытиями. В противовес ему, Фейнман никогда не интересовался награжденными лауреатами. Все, что его занимало, — это информация о том, было ли предположение правильным.

Влево или вправо?

Давайте представим, что с помощью наших огромных радиотелескопов мы контактируем с внеземной цивилизацией и что это возможно только посредством радио. В данных условиях как мы можем указать инопланетянам на правую сторону? Мы не можем сказать им взять компас и посмотреть в сторону севера, так как то, что мы называем «север», является результатом произвольного решения. Сверяясь с компасом, мы должны помнить, что красная стрелка означает север; если это не так, мы можем выбрать его по своему желанию.

Размышляя над этим, мы можем прийти к выводу, что в данных условиях мы преследуем призрачную цель, так как физические законы не различают левую и правую стороны. Другими словами, если нам продемонстрировать видео столкновения двух машин или одной партии в бильярд, мы будем не способны определить, показаны нам картинки прямо или, наоборот, после того как они были отражены в зеркале. В физике такая зеркальная симметрия называется «сохранением четности».

Не все объекты Вселенной симметричны когда мы наблюдаем их в зеркале - фото 45

Не все объекты Вселенной симметричны, когда мы наблюдаем их в зеркале. Неподвижная сфера является симметричной: тогда говорят о четности. В противном случае речь будет идти о нечетности. Эта симметрия (геометрическая) исчезает, если сфера начинает вращаться вокруг своей оси. Она больше не соответствует своему зеркальному отражению (см. рисунок).

Изменение четности меняет сферу, вращающуюся в одну сторону, на другую сферу, вращающуюся в обратном направлении. Мы можем проверить это, раскрутив глобус перед зеркалом. С другой стороны, интерес вызывает тот факт, что зеркало меняет местами левую и правую стороны, но не верх с низом. Ответ на этот извечный вопрос заключается в том, что зеркало прячет изменение четности: оно меняет координату по оси, которая перпендикулярна ему, и не меняет координаты на двух других осях, лежащих в плоскости, параллельной ему.

Закон сохранения четности предусматривает, что нечетные объекты не могут превращаться спонтанно в четные. И это важно: в противном случае мы смогли бы использовать спонтанное изменение четности, чтобы определить абсолютную правую и левую стороны. В случае субатомных частиц теория указывает, что если четность сохраняется, тогда четная частица не может распадаться на одну четную частицу и одну нечетную; зато она может распасться на две нечетные или две четные частицы.

В то же время физики открыли, что странные каоны не следуют этому правилу. Они распадаются на другие более легкие частицы, названные пионами, иногда в количестве двух, иногда — трех. Фейнман предложил объяснение такому аномальному поведению. Согласно ему, эта частица:

«...распадалась иногда на два, иногда на три пиона. Но никто не был готов смириться с этим, так как существует закон сохранения четности. Он предполагает, что все физические законы симметричны по отношению к их зеркальному отражению; с другой стороны, он утверждает, что элемент, который образует два пиона, не может также давать три пиона».

Симметрии

Физика обычно ищет закономерности в устройстве нашего мира, то, что обычно называют «законы природы».

Большинство из них можно описать при помощи математических формул. Симметрия создает одну из исследовательских моделей законов природы. Мы все когда-то ее использовали. Если покрутить футбольный мяч на пальце, наше восприятие мяча не меняется: этот феномен называется осевой симметрией; одноцветные машины, выстроенные в один ряд, представляют трансляционную симметрию, то есть невозможно отличить одну машину от другой, так как последняя машина может быть похожей на первую. К тому же, за исключением нескольких очень особых деталей, мы не делаем различия между собой и нашим отражением в зеркале: это зеркальная симметрия. Все эти примеры позволяют нам понять смысл слова «симметрия»: это нечто, остающееся неизменным после преобразования. Какое значение она имеет в физике? Природные законы представляют собой симметрии, которые существуют во Вселенной, и знаменитый закон о сохранении энергии — это не что иное, как симметрия: существует количество энергии, которое остается неизменным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Мигуэль Сабадел читать все книги автора по порядку

Мигуэль Сабадел - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика отзывы


Отзывы читателей о книге Наука. Величайшие теории: выпуск 6: Когда фотон встречает электрон. Фейнман. Квантовая электродинамика, автор: Мигуэль Сабадел. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x