Жак Адамар - Исследование психологии процесса изобретения в области математики

Тут можно читать онлайн Жак Адамар - Исследование психологии процесса изобретения в области математики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Психология, издательство Советское радио, год 1970. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Исследование психологии процесса изобретения в области математики
  • Автор:
  • Жанр:
  • Издательство:
    Советское радио
  • Год:
    1970
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Жак Адамар - Исследование психологии процесса изобретения в области математики краткое содержание

Исследование психологии процесса изобретения в области математики - описание и краткое содержание, автор Жак Адамар, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В настоящее время в связи с задачами эвристического программирования возрос интерес к анализу творческого мышления человека. В книге, автор которой — один из видных математиков нашего столетия, подробно рассмотрен процесс творчества, преимущественно математиков. Особое внимание уделено роли подсознания в процессе творчества. Книга представляет интерес для математиков, кибернетиков, психологов и широкого круга читателей.

Исследование психологии процесса изобретения в области математики - читать онлайн бесплатно полную версию (весь текст целиком)

Исследование психологии процесса изобретения в области математики - читать книгу онлайн бесплатно, автор Жак Адамар
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Часто, особенно когда я один, мне кажется, что я нахожусь в другом мире. Числовые идеи кажутся мне живыми. Проблемы самых разных жанров неожиданно предстают перед моими глазами со своими ответами».

Надо добавить, что Ферроль увлекался не только числовыми вычислениями, но также, и даже в ещё большей мере, вычислениями алгебраическими. Это тем более удивительно, что и в этом случае он доводил расчёты до их эффективного завершения бессознательным образом [55].

Оценка собственной работы

Как мы относимся к результату, который мы получили? Очень часто исследование, которое меня глубоко интересовало в то время, когда я им занимался, теряет свой интерес сразу же после того, как я нашёл решение — к несчастью, в момент, когда я должен его редактировать. Через некоторое время, скажем через два месяца, я могу его оценить более объективно.

Тот же вопрос был задан Полю Валери на собрании Философского общества в Париже; он ответил: «Это всегда плохо оборачивается, я "отчуждаюсь"». И, как мы это видели (стр. 56), описывая процесс изобретения, он сделал аналогичное замечание.

3) Продолжение работы. Результаты-эстафеты . Двойная работа проверки и «завершения» результата принимает другой смысл, когда мы рассматриваем этот результат, как это часто случается, не как конец исследования, но только как некоторый этап (мы находим последовательные этапы такого рода в рассказе Пуанкаре), иными словами, когда мы размышляем о возможности его использования.

Эта возможность требует, чтобы работа была не только проверена, но чтобы она была «уточнена». Действительно, так как мы знаем, что наша бессознательная работа, показывая нам путь для получения результата, не даёт нам точного его выражения, то может случиться (и фактически это случается часто), что некоторые свойства этого точного выражения, которые мы не могли полностью предвидеть, оказывают существенное и даже решающее влияние на продолжение работы.

Так было в случае первого этапа в работе Пуанкаре (хотя не было в последующих). Он нам сообщает, что первоначально предполагал, что функции, которые он называл автоморфными, не могли существовать, и только обратный вывод, полученный в результате бессонной ночи, дал его мыслям направление, которое они приняли впоследствии.

Тот закон, что каждая планета вращается вокруг Солнца потому, что она притягивается к нему силой, обратно пропорциональной квадрату расстояния, был открыт Ньютоном как интерпретация двух первых законов Кеплера. Но имеется коэффициент пропорциональности — отношение между силой притяжения и величиной, обратной квадрату расстояния; значение этого коэффициента не меняется во время движения, и его величина должна выводиться из третьего закона Кеплера, который касается сравнения движения различных планет. Вывод таков, что этот коэффициент одинаков для всех планет: все планеты подчиняются одному и тому же закону притяжения; этот вывод не является следствием более широкого подхода к проблеме, а вытекает лишь из точного и внимательного расчёта. Сомнительно, чтобы Ньютон пришёл к последнему выводу иначе, как с пером в руке. Итак, если бы результаты этих подсчётов различались, то последний этап открытия, тот, который отождествляет силу, поддерживающую Луну во время её вращения вокруг Земли, с силой, которая заставляет падать весомое тело (яблоко, если мы будем следовать легенде), этот последний этап не имел бы места.

Может быть, неосторожно представлять себе ход рассуждений, протекающих в голове Ньютона, но можно отметить, что отождествление, которое он сделал, требовало проверки не только алгебраической, но и численной, с использованием получаемых наблюдением оценок порядков величин, входящих в формулы (проверки, которая, как известно, одно время считалась Ньютоном ошибочной). Если же, говоря строго, можно усомниться в этом примере, то имеются другие примеры, совершенно неоспоримые. Например, ясно, что Георг Кантор не мог предвидеть результат, о котором он сам говорил: «Я это вижу, но я ему не верю».

С другой стороны, как бы то ни было, но дальнейшее развитие изобретения, как и вначале, требует проведения подготовительной работы, о которой мы уже говорили. После того, как некоторая стадия исследования закончена, следующая требует нового толчка, который может быть рождён и направлен лишь тогда, когда мы сознательно и точно воспринимаем первый результат.

Возьмём достаточно обычный пример: каждый понимает, что при пересечении двух параллельных прямых двумя параллельными получаются отрезки, попарно равные; каждый знает это, сознательно или нет. Но до тех пор, пока это не высказано сознательно, отсюда нельзя получить никаких следствий, например, подобия.

Возможно, что новая часть исследования будет результатом исключительно сознательной работы, как об этом рассказывает Пуанкаре (точнее, сказал бы я, результатом сознательной работы при сотрудничестве краевого сознания); или, более того, как в примере с Ньютоном, эта часть исследования может заслуживать и требовать длительной систематической сознательной работы. Чтобы это заметить, требуется новое усилие нашей воли, и точное выражение полученного ранее результата является для этого весьма существенным.

Итак, каждый этап исследования должен как бы сочленяться со следующими этапами с помощью результата, выраженного в точной форме, который я предложил бы назвать результатом-эстафетой (или формулой-эстафетой , если это формула, как в ньютоновской интерпретации третьего закона Кеплера). Когда удаётся достигнуть такого сочленения, аналогичного стыковке путей на развилке железной дороги, нужно решить, в каком направлении должно продолжаться исследование. Здесь эти разветвления ясно показывают направляющее действие того сознательного «я», считать которое низшим по отношению к бессознательному мы могли бы быть склонны.

Сделанные выше замечания могут показаться до некоторой степени очевидными и даже ребяческими; но небесполезно заметить, что они нам помогают понять не только процессы, происходящие в уме любого исследователя, но и общую структуру математики. Её продвижение вперёд было бы невозможным не только без проверки результатов, но особенно без систематического использования того, что мы только что назвали результатами-эстафетами, которые очень часто используются настолько, насколько это возможно, вплоть до их крайних следствий. Такова, например, роль простого и классического факта, что, пересекая треугольник прямой, параллельной одной из его сторон, получают другой треугольник, подобный данному — факт, очевидный сам по себе, но который должен быть строго сформулирован, чтобы дать длинный ряд свойств, которые из него вытекают.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Жак Адамар читать все книги автора по порядку

Жак Адамар - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Исследование психологии процесса изобретения в области математики отзывы


Отзывы читателей о книге Исследование психологии процесса изобретения в области математики, автор: Жак Адамар. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x