Анатолий Ракитов - Трактат о научном познании для умов молодых, пытливых и критических
- Название:Трактат о научном познании для умов молодых, пытливых и критических
- Автор:
- Жанр:
- Издательство:Детская литература
- Год:1977
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Ракитов - Трактат о научном познании для умов молодых, пытливых и критических краткое содержание
Трактат о научном познании для умов молодых, пытливых и критических - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Что же такое измерение? Отложив шесть с половиной раз стандартную метровую линейку вдоль прилавка в магазине, мы говорим, что длина его равна 6 м 50 см. Положив на одну чашу весов арбуз, а на другую — уравновешивающую его гирю в 5 кг и еще три разновеска в 100, 50 и 25 г, мы утверждаем, что вес арбуза равен 5 кг 175 г.

Таким образом, измерение длины, веса да и всех других величин заключается в приписывании измеряемым величинам определенных числовых значений.Это приписывание делается не произвольно (иначе его познавательная ценность была бы равна нулю), а по некоторым правилам. Правила определяются теорией измерений и включают в себя: 1) выбор единиц измерения (например, сантиметр, метр, грамм, килограмм, секунда и т. д); 2) определение операций, допустимых при манипулировании со стандартами данной величины (последовательное прикладывание метровой линейки, последовательное добавление или удаление разновесков на чаше весов и т. д.); 3) оперирование с числовыми значениями, полученными при измере-нии(например, допускается или не допускается сложение, вычитание, умножение, деление и другие операции с числовыми результатами измерений).
Большинство шкал на известных вам по школьным лабораториям приборов представляют собой не что иное, как такие правила, выполненные в виде насечек на планке метровой линейки, термометра, пружинных весов и т. д. К числу шкал, по существу, относятся также деления на часовом циферблате, позволяющие по положению стрелки приписывать определенные числовые значения интервалам времени, в течение которого совершаются какие-либо события.
Таким образом, в результате измерения определенной величины можно приписать событию или группе событий, явлений и процессов те или иные числовые значения. С другой стороны, располагая соответствующими числовыми значениями, можно отобрать подходящие явления и процессы среди гигантского множества других изучаемых явлений и процессов.
Измерения, следовательно, позволяют заменить качественное описание явлений, в известной степени зависящее от органов восприятия данного субъекта (исследователя), количественными характеристиками, имеющими одинаковое объективное значение для различных исследователей, экспериментирующих или наблюдающих за явлениями в сходных условиях.
Однако обойтись одними измерениями никакая наука не может.
Во-первых, для того чтобы измерения были надежными, желательно проводить их много раз, что позволяет учесть влияние случайных и побочных обстоятельств. При этом часто возникают так называемые ошибки измерения, определить которые можно лишь с помощью вычислений, основанных н£ особых математических формулах.
Во-вторыл, измерения, как и наблюдения, могут повторяться и производиться лишь конечное число раз. При этом остается неясным, каковы значения величины между моментами двух «соседних измерений». Измерения не дают нам сведений о значениях изучаемой величины в любой интересующий нас момент времени, они не пригодны для того, чтобы делать предсказания о будущих значениях данной величины, о поведении того или иного явления в будущем или прошлом.
И, наконец, в-третьих, существуют такие явления и процессы, которые просто не поддаются прямому измерению. Как, например, измерить температуру на поверхности Солнца, равную примерно 6000° С, или в его центре, где она достигает, по мнению ученых, миллиона градусов. Никакой термометр не может быть приведен в соприкосновение с таким горячим телом, ибо даже самые жаростойкие сплавы и составы немедленно сгорают или испаряются при подобных температурах. Оказывается, что для этого приходится пользоваться косвенными измерениями, измеряя, скажем, яркость и светимость того или иного тела, чтобы, воспользовавшись после этого вычислениями, установить значение интересующей нас величины, в данном случае температуру различных частей Солнца.
Итак, измерения представляют собой продукт прямого внедрения математики в эксперимент и наблюдение. Смысл измерения, оказывается, состоит в том, чтобы превратить результаты лаблюдений и экспериментов в числа, которые могут быть включены в различные вычислительные процедуры и преобразования.
Но где и когда происходит такое включение и почему мы не можем ограничиться либо одними вычислениями, либо одними измерениями?
На некоторые из этих вопросов я отчасти ответил выше, другие я собираюсь обсудить сейчас.
Дело в том, что сами по себе чистые математические преобразования и манипуляции с числами не имеют прямого отношения к действительности, хотя многие математические операции и объекты (например, натуральные числа 0, 1, 2, 3. . .) возникли как результат абстрагирования от вещей и процессов, существующих и происходящих в реальном мире.
Когда мы говорим, что 3 -f- 3 = 8, это отнюдь не означает, что мы утверждаем, будто бы где-то в мире реально существует восемь каких-то предметов. Во всяком случае, наше математическое утверждение не имеет в виду ничего конкретного, оно просто устанавливает правило для оперирования с числами. Если же мы утверждаем, что число баранов в одном стаде три, а в другом пять, то на вопрос, сколько будет баранов, если мы объединим эти два стада без потерь и добавлений в одно, мы можем ответить, что их будет восемь. Для этого нет необходимости заново производить пересчет, достаточно лишь просуммировать числа, указывающие количество баранов в каждом стаде по вышеприведенному правилу.
Следовательно, чтобы математические расчеты давали нам знания об объективном мире, мы должны сначала произвести измерения, получить с их помощью числовые значения величин, а затем подставить их в те или иные формулы.
Чтобы эти формулы и совершаемые над ними преобразования вновь дали нам знания об объективном мире, необходимо, чтобы мы располагали не произвольными математическими формулами-теоремами и преобразованиями, а законами науки, выраженными в математической формуле. В этом случае у нас будет гарантия, что истинные законы науки дают нам знания об объективных конкретных предметах, и притом знания объективно-истинные во всех ситуациях, когда мы подставляем числовые значения, полученные в измерениях вместо, переменных, фигурирующих в формулировке физических, биологических, химических, астрономических и других фундаментальных законов.
Если далее мы имеем гипотезы, выраженные в виде математических уравнений и формул, и допускаем, что входящие в них величины могут иметь определенные значения, то после соответствующих преобразований мы можем получить числовые выражения, подсказывающие нам, что и как следует измерить в действительности, для того чтобы проверить правильность, объективность данных гипотез. В этом случае измерение как бы завершает исследование. Если результаты формальных преобразований и вычислений в границах разрешенных ошибок совпадают с результатами измерений, то именно эта процедура доказывает нам, что гипотеза имеет право называться законом науки. Здесь математика обнаруживает новые замечательные особенности, она выступает как особый язык, позволяющий нам формулировать, выражать и даже создавать знания о явлениях, свойствах и состояниях, которые далеко не всегда поддаются измерениям или вообще им не поддаются, хотя и имеют количественные характеристики.
Читать дальшеИнтервал:
Закладка: