Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах
- Название:Иллюзия пользователя. Урезание сознания в размерах
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах краткое содержание
В книге «Иллюзия пользователя: Урезание сознания в размерах» («The User Illusion: Cutting Consciousness Down to Size») датский ученый и писатель Тор Норретрандерс пишет: «Шоу начинается еще до того, как мы решаем провести его!» Затем он продолжает: «Прежде всего человек не является сознательным. Человек в основном несознателен. Идея сознательного „Я“, некого домоправителя всего того, что входит в человека и исходит из него, является иллюзией — может быть полезной, но все равно иллюзией»
Иллюзия пользователя. Урезание сознания в размерах - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Можно задать вопрос, чего стоило ему это молчание. Гедель не делился с людьми источником своих озарений. Он напрямую не раскрывал своих верований о мире. Он говорил другим только то, что мог доказать.
Гедель вел очень одинокую жизнь, доверял очень немногим людям и несколько раз лечился в санаториях по поводу депрессии и переутомления. Он был сдержанным и подозрительным — не до такой степени, чтобы это обеспокоило докторов — несмотря на то, что был озабочен своим здоровьем. Его депрессия усугублялась и в 70-е годы превратилась в паранойю с ее классическим синдромом страха отравления. В 1977 году ситуация стала критической — его жена попала в больницу и больше не могла за ним ухаживать. Он не открывал дверь медицинскому персоналу и 14 января 1978 умер. Его тело нашли в позе эмбриона. «Недоедание и истощение», которые стали результатом «нарушений психики» — такой была официальная причина смерти.
Он внес самый большой вклад в то, чтобы человеческий мозг вышел за пределы формально доказуемого, который когда-либо появлялся в области логического мышления. Но это воспринималось как утверждение бессилия, техническая особенность — с исторической точки зрения — локализованное восстание против чрезмерной веры в науку.
Сам Курт Гедель признавал следующую формулировку, которая пришла к нам от математического логика Хао Ванга: «В философии Геделю так и не удалось найти то, что он искал: новый взгляд на мир, его базовые составляющие и правила, по которым они складываются. Несколько философов, особенно Платон и Декарт, утверждают, что в определенные моменты жизни у них возникал интуитивный взгляд на подобные вещи, отличный от нашего повседневного взгляда на мир».
Безусловно, у Геделя тоже были подобные откровения. Но он не осмеливался их обсуждать. Он осмеливался открывать нам только те из них, которые мог однозначно толковать. Он осмеливался делиться своими откровениями только в том виде, какими они представали снаружи — с точки зрения всего остального общества.
Чудо математики состоит в том, что этого было достаточно, чтобы и другие могли увидеть свет.
Весной 1935 года 22-летний Алан Тьюринг, который только что закончил докторат, посещал лекции, которые проводил математик М.Х.А. Ньюман в Кембридже, Англия. Предметом лекций были фундаментальные задачи математики. Отправная точка — программа Гильберта. На лекциях говорилось, что Гедель ясно и четко показал: центральные элементы программы Гильберта не выдерживают критики. Но оставался один вопрос, который не удалось решить Геделю: так называемая проблема разрешимости — Entscheidungsproblem .
Эта самая Entscheidungsproblem рассматривается по-другому: если у нас есть математическая система, которая говорит о частном предположении — можем ли мы решить, возможно ли вывести это предположение из системы? Гедель показал, что в любой закрытой системе возникнут вопросы, на которые не будет ответов — правдивые утверждения, которые не могут быть выведены. И это было критично, так как показывало, что мечта раз и навсегда уладить все в математике является недостижимой.
Проблема решения, может или нет быть выведено то или иное отдельное предположение, на первый взгляд гораздо больше должна занимать инженеров — это проблема, которая затрагивает специфические и конкурентные вопросы. Безусловно, она интересует и математика, но для всех остальных она должна казаться значительно менее важной, чем сама фундаментальная проблема — что мы не в состоянии доказать все.
Но нет. Даже если этот вопрос может показаться скучным — ответ на него определенно таковым не является.
В своих лекциях Ньюман спрашивал, можем ли мы создать своего рода «механический процесс», который был бы применим к математической задаче с целью определить, имеет ли она решение. В сущности, это было как раз то, о чем спрашивал Гильберт: существует ли рецепт, который может нам сказать, способны ли мы вывести специфические следствия из теории? Желательно, чтобы это был способ, который не потребует слишком много воображения и при этом действительно будет механическим — алгоритм, как называют это математики.
«Механический процесс». Алан Тьюринг принял во внимание выражение Ньюмана. Он подумал о машинах — машинах, которые могли бы считать. В 1935 подобные машины уже существовали — но они не представляли особого интереса. И Тьюринг начал рассматривать принцип работы подобных машин: что нужно, чтобы машина могла решить математическую задачу и определить, может ли предположение быть получено из теоретической системы?
Требовалось не так уж много. Тьюринг изобрел простую логическую машину, которая не слишком много умела. Она могла выполнять несколько инструкций: писать, читать и выполнять в своей памяти исправления. Немногим больше, чем обычная печатная машинка.
Но Тьюринг оснастил свою логическую машину бесконечно большой памятью. Он предусмотрел для машины возможность записывать свою деятельность на рулоне бумаги бесконечно долго. Эта бумага могла перемещаться вперед и назад, так что машина — как и печатная машинка — работала на определенном участке в определенный момент времени. Этот бесконечный рулон бумаги — лента — был бесконечным вот почему: на самом деле неважно, насколько точно машина выполняла свои инструкции. Ведь у нее было достаточно памяти и достаточно времени.
Тьюринг понял, что такая простая машина — которая известна сегодня как машина Тьюринга — могла бы на самом деле решить многие задачи Гильберта по дедукции — и как раз потому, что Гедель изобрел элегантный логический маневр, благодаря которому можно было рассматривать любой вид математических конструкций под видом чисел. Это была универсальная машина, способна решить любые арифметические задачи. Любые известные выполнимые вычисления можно было выполнить на машине Тьюринга, которая, следовательно, воплотила принцип счетной машины в ее чистом и обобщенном виде.
Но вскоре Тьюринг понял и кое-что еще: алгоритм может быть написан так, что будет для машины «не пережевываемым» в понятной для нее манере. Были числа, к которым она не могла подобраться. И не потому, что числа были слишком большими — а потому, что алгоритм был слишком непостижим: невозможно было сказать, сможет ли машина справиться с числом, пока операция не была выполнена — а это могло занять бесконечно много времени. Таким образом никто не мог знать, удастся ли ему получить результат в течение конечного периода времени.
Это значит, что Entscheidungsproblem Гильберта была неразрешимой. Мы не можем создать алгоритм, который говорил бы нам, может ли что-либо быть выведено из математической системы.
Это заключение важно само по себе — и к нему одновременно и независимо пришел и другой ученый — американский логик Алонзо Черч.
Читать дальшеИнтервал:
Закладка: