Ричард Нисбетт - Мозгоускорители. Как научиться эффективно мыслить, используя приемы из разных наук
- Название:Мозгоускорители. Как научиться эффективно мыслить, используя приемы из разных наук
- Автор:
- Жанр:
- Издательство:Альпина Паблишер
- Год:2016
- Город:Москва
- ISBN:978-5-9614-5745-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Нисбетт - Мозгоускорители. Как научиться эффективно мыслить, используя приемы из разных наук краткое содержание
По статистике, пары, которые устраивают пышные свадьбы, реже разводятся. Почему? Просто состоятельные люди имеют меньше поводов для ссор, чем бедные, да и разводиться им менее выгодно. То есть прямой связи между масштабом вечеринки и вероятностью развода нет, но есть неочевидный третий фактор, который все объясняет.
Наша жизнь полна таких скрытых факторов, а наш мозг любит упрощать реальность, увязывая никак не связанные вещи. Всемирно известный психолог Ричард Нисбетт объясняет, почему простые ответы приводят к неверным решениям и роковым ошибкам. Хорошая новость в том, что каждый из нас способен не вестись на уловки «здравого смысла» и научиться мыслить ясно и критически. По словам Нисбетта, «лучшая жизнь в современном мире вам попросту недоступна без базовых знаний статистики и логики». Автор дарит читателю целый арсенал способов решать жизненные задачи и принимать правильные решения в сложных ситуациях. И делает он это так элегантно и увлекательно, что оценит каждый гуманитарий.
Мозгоускорители. Как научиться эффективно мыслить, используя приемы из разных наук - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Давайте расставим все точки над i по поводу информации, которую дает собеседование. В том случае, если у вас есть значимая, безусловно ценная информация о претенденте на место, которую можно узнать, просто просмотрев его бумаги, тогда лучше не проводить собеседование вообще. Если бы мы умели придавать собеседованию ровно столько значения, сколько оно заслуживает, это было бы не так, но не переоценивать его значение практически невозможно, потому что мы склонны с неоправданной самоуверенностью относиться к собственным наблюдениям, которые якобы дают нам верное представление о способностях и качествах человека.
Результаты собеседования надо воспринимать как голографический снимок человека — изображение меньше, оно расплывчатое, но все же это изображение этого человека. Собеседование — это крохотный, фрагментарный и, возможно, искаженный пример, вырванный из контекста всей информации, которая имеется об этом человеке. Вспомните буддистскую притчу про слона и слепых и заставьте себя поверить, что вы и есть один из этих слепых.
Помните, что иллюзия важности собеседования и фундаментальная ошибка атрибуции (ФОА) —явления одной природы. То и другое усугубляется тем, что нам никогда не удается уделить нужное количество внимания той информации, которая имеется о человеке. Если бы мы лучше понимали смысл ФОА, мы бы гораздо больше сомневались в той информации, которую дает собеседование. Точное применение закона больших чисел также делает нас менее подверженными ФОА и иллюзии собеседования.
Я бы хотел с гордостью заявить, что мои знания об истинной пользе собеседований всегда позволяют мне критически относиться к собственным умозаключениям, сделанным на основе собеседования. Однако сдерживающий эффект здесь весьма и весьма ограничен. Слишком сильна иллюзия, что я обладаю ценными знаниями, имеющими под собой серьезную основу. Все равно приходится напоминать себе, что я не должен придавать слишком большое значение собеседованию или любому другому поверхностному впечатлению о человеке. Это особенно важно, когда я обладаю заведомо надежной информацией о нем, основанной на мнении других людей, давно знающих кандидата, а также подробным перечнем достижений этого человека в научной или другой области.
Однако мне не составляет труда помнить об ограниченности чужих суждений, основанных на коротком собеседовании!
Моя подруга — назовем ее Кэтрин — консультирует руководство медицинских учреждений по вопросам менеджмента. Она любит свою работу— отчасти потому, что ей приходится путешествовать и знакомиться с людьми. Кроме того, она немного гурман и любит ходить в хорошие рестораны. Но часто разочаровывается, вновь посетив понравившееся заведение. Во второй раз еда уже не кажется ей такой вкусной. Как вы думаете почему?
Если вы ответите «Может быть, потому что в этом ресторане часто меняется шеф-повар» или «Вероятно, у нее завышенные ожидания», вы игнорируете кое-какие важные статистические закономерности.
Статистический подход к проблеме начинается с понимания того факта, что в том, насколько вкусную еду приносят Кэтрин в любом конкретном ресторане в каждом конкретном случае, всегда содержится элемент случайности. В зависимости от обстоятельств вашего визита в ресторан вы будете по-разному оценивать качество поданных блюд. Блюдо, которое Кэтрин попробовала в этом ресторане первым, по качеству могло варьировать от среднего (или даже ниже среднего) до великолепного. Эта разница и заставляет нас относиться к качеству оцениваемой еды как к переменной величине.
Непрерывная переменная величина (которая может непрерывно изменяться в диапазоне от наименьшего до наибольшего значения — как, например, рост людей), в отличие от дискретной переменной (например, в случае с гендерной идентификацией или политическими пристрастиями), всегда имеет среднее значение и распределение относительно среднего значения. Принимая во внимание один этот факт, неудивительно, что Кэтрин часто была разочарована: нельзя избежать вероятности, что иногда второй поход в ресторан окажется хуже, чем первый (точно так же, как в некоторых случаях второй раз оказывается лучше первого).
Но это еще не все. Следует ожидать, что мнение Кэтрин о блюде, которое однажды показалось ей превосходным, ухудшится. Это происходит оттого, что чем ближе переменная величина к своему среднему значению, тем чаще она встречается. Чем она дальше от среднего значения, тем она встречается реже. Поэтому если в первый раз еда показалась ей исключительной, то в следующий раз, вероятно, ее оценка будет не такой. Это верно для так называемого нормального распределения, график которого изображается кривой нормального распределения, показанной на рисунке 2.
Нормальное распределение — это математическая абстракция, но к ней на удивление часто стремится «поведение» непрерывных переменных величин. Например, количество яиц, которые еженедельно откладывают разные курицы; количество ошибок при сборке автомобильных коробок передач за месяц; результаты теста разных людей на IQ — все эти значения часто приближаются к нормальному распределению. Никто не знает почему, но это так.
Существует несколько способов описать дисперсию (разброс, отклонение) значений переменной от ее среднего значения. Один из них — подсчитать размах выборки — разность наибольшего и наименьшего значений. Другой, более эффективный способ измерения дисперсии — метод среднего отклонения от среднего значения. Если среднее качество блюд, которые попробовала Кэтрин при первом посещении ресторанов, обозначить как, скажем, «хорошее», а среднее отклонение от среднего значения равняется, скажем, «очень хорошему» в положительную сторону и «весьма посредственному» в отрицательную сторону, мы можем сказать, что степень дисперсии — среднего отклонения мнения Кэтрин о блюдах, которые она впервые пробует в ресторанах, не очень велика. Если же среднее отклонение варьирует от «великолепного» в положительную сторону до «весьма посредственного» в отрицательную сторону, то можно сказать, что дисперсия довольно велика.
Но есть еще более действенный способ вычисления дисперсии, который можно применить к любой непрерывной переменной величине. Это среднеквадратическое отклонение, оно же СКО, обозначаемое греческой буквой σ (сигма). Среднеквадратическое отклонение — это квадратный корень из дисперсии переменной величины. В принципе, среднеквадратическое отклонение не слишком отличается от среднего, но обладает кое-какими чрезвычайно полезными свойствами.
На кривой нормального распределения на рисунке 2 отмечены среднеквадратические отклонения. Примерно 68% значений переменной находятся в пределах от +σ до - σ (от плюс одного до минус одного стандартного отклонения от среднего значения выборки). Возьмем, например, результаты теста на IQ. В большинстве IQ-тестов средним значением принято считать 100 баллов, а среднеквадратическим отклонением — 15. То есть человек с уровнем IQ, равным 115, является среднеквадратическим отклонением выше среднего значения. Расстояние между средним значением и среднеквадратическим отклонением выше среднего довольно велико. Можно ожидать, что человек с IQ, равным 115 баллам, окончит университет и даже займется научной работой. Люди с таким уровнем IQ обычно получают высшее образование и становятся специалистами в какой-то области, менеджерами или инженерами. Люди с уровнем IQ, равным 100 баллам, чаще получают среднее специальное образование или вообще нигде не учатся после школы и становятся продавцами, секретарями или рабочими.
Читать дальшеИнтервал:
Закладка: