Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
По тем временам я остановился на МК AT90S2313 — он выпускается в 20-выводном корпусе (см. рис. 12.1 вверху), в котором минимум 5 выводов должно быть занято под системные нужды (два питания, Reset [13] В МК семейства Mega и Tuny вывод Reset можно использовать и под другие нужды, но в «классике» это было еще не так, да и неудобно это.
и два вывода для подключения кварца). Итого нам остается на все про все 15 выводов, что нас устраивает. Мы даже вроде бы получаем один резервный вывод, но далее увидим, что на самом деле под все желательные дополнительные функции выводов нам будет не хватать и придется изворачиваться (сейчас я бы, скорее всего, остановился на ATmega8, у которого 28 выводов корпуса, чтобы не экономить, но для изучения особенностей AVR дефицит даже полезнее). Естественно, если вы захотите повторить схему, и не достанете 2313 Classic, то придется заменить его на ATtuny2313, соответствующим образом установив fuse-бит совместимости (см. главу 13 ). Так как корпус у него тот же самый, то конструкция ничем отличаться не будет.
Теперь общая схема. Выбираем индикаторы большого размера (высота цифр — 1" или 25,4 мм), с общим анодом, т. е. типа SA10, если брать продукцию Kingbright. Лично я предпочитаю желтого свечения (например, SC10-21Y), но это не имеет значения. Так как падение напряжения у них может достигать 4 В, то от того же источника, что требует МК (5 В), питать их нельзя.
Следовательно нам потребуется два напряжения питания: стабилизированное +5 В и нестабилизированное (пусть будет +12 В). Управлять разрядами индикаторов мы будем от транзисторных ключей с преобразованием уровня (когда на выходе МК уровень +5 В, ключ подает +12 В на анод индикатора), а сегменты от простых транзисторных ключей — при уровне +5 В вывод сегмента коммутируется на «землю» (так как питание индикаторов повышенное, то, к сожалению, управлять прямо от выводов процессора не получится). В обоих случаях управление получается в положительной логике: включенному индикатору и сегменту соответствует логическая единица (что совершенно не принципиально, но удобно для простоты понимания работы схемы). Резисторы в управлении сегментами примем равными 470 Ом, тогда пиковый ток через сегмент составит примерно 20 мА, а средний — 5 мА (при динамическом управлении 4-мя разрядами). Всех «восьмерок» у нас быть не может, максимальное число одновременно горящих разрядов равно 24 («20:08»), потому общее максимальное потребление схемы составит 24 х 5 = 120 мА, плюс -10 мА схема управления, итого 130 мА.
Теперь обязательно подумаем о том, чтобы часы продолжали идти при сбоях в электрической сети. Нет ничего ужасней бытового прибора, который не может сохранить установки даже при секундном пропадании напряжения питания, вероятно, вы не раз с такими мучились. Конструкторов, делающих музыкальные центры, магнитофоны, микроволновые печи и электроплиты, в которых часы при малейшем сбое в подаче электроэнергии приходится устанавливать заново, следует расстреливать без суда и следствия.
Режим энергосбережения с глубоким «засыпанием» МК не подходит, поскольку тогда все «замирает» и его применение обессмысливается, ведь нам нужно, чтобы часы не просто сохраняли значение времени, а продолжали идти и при отключении от сети. При питании в пределах 4–5 В МК типа 2313 потребляет около 5 мА, так что можно рассчитывать на непрерывную работу от щелочной («алкалайновой») батарейки типа АА с емкостью порядка 2 Ач в течение не менее 2–3 недель. Для обеспечения работы понадобятся три таких элемента, соединенных последовательно, тогда их общее напряжение составит 4,5 В.
Заметки на полях
В устройствах на специализированных микросхемах RTC можно использовать режимы энергосбережения МК, и дело обстоит значительно лучше: часы идут отдельно до тех пор, пока есть хоть какое-то питание (типичное минимально допустимое значение для RTC — 2 В). В результате при грамотном проектировании можно обеспечить время работы от батарейки в сотни раз большее, чем у нас. Но мы все же пока ограничимся простейшим вариантом — настольные часы и не предназначены для работы в автономном режиме, а для того, чтобы перенести их из комнаты в комнату или «пережить» отключение электричества на пару часов, возможностей нашей системы вполне хватит.
Для обеспечения такого режима нам понадобится монитор питания — схема, которая отслеживает наличие входного напряжения, и переключатель с сетевого питания на батарейки. Чтобы сделать схему совсем «юзабельной», добавим также небольшой узел для сигнализации о необходимости замены резервной батарейки — пусть это будет наше ноу-хау, т. к. в подобных сетевых приборах такого почти ни у кого нет. Хотя есть специальные микросхемы, которые «мониторят» питание, и мы будем их в дальнейшем использовать, здесь в целях максимального упрощения схемы мы без них обойдемся. Схему такого узла удобно реализовать, «не отходя от процессора», на встроенном компараторе. Но тогда нужно задействовать аж 18 выводов (12 под индикацию, 2 кнопки, 2 входа компаратора, 1 для его выхода и еще 1 для монитора питания), а ставить процессор большего размера только для этой цели не хочется. И еще больше не хочется добавлять какие-то внешние схемы — все только потому, что мы захотели контролировать батарейку, которая, может быть, сядет этак лет через пять?
Поэтому мы поступим так: задействуем один из входов компаратора также и под вторую кнопку, как обычный вывод порта. А на второй вход компаратора «повесим» дополнительно функцию монитора— сигнализировать о пропадании внешнего питания. Остается придумать, как обеспечить сигнализацию разряда батареи — тут мы сделаем просто: пусть разделительный символ (двоеточие) мигает, когда все нормально, а когда батарея разряжена — горит все время. Таким образом мы получим наиболее экономичную схему с минимумом внешних элементов.
Теперь поглядим на схему разводки выводов AT90S2313 (рис. 14.1) и выберем, что и к чему мы будем коммутировать.
Рис. 14.1. Разводка выводов МК AT90S2313(функции показаны применительно к нашей задаче)
Ко входу внешнего прерывания INT1 (7) удобно подключить кнопку, которая будет вводить часы в режим установки. От порта D (портов А и С в этом микроконтроллере нет) осталось шесть разрядов, четыре из которых мы задействуем под управление разрядами индикаторов: PD0 (2), PD1 (3), PD2 (6) и PD4 (8). Из восьми выводов порта В два заняты под входы компаратора AIN+ (выв. 12 — к нему мы подсоединим опорный источник для контроля батареи и также с него будем снимать информацию о состоянии питающего напряжения и второй кнопки) и AIN- (выв. 13 — к нему подключим батарейку). Для управления миганием разделительного двоеточия удобно использовать вывод ОС1 (15), который управляется автоматически от таймера (см. главу 12 ). Под управление сегментами мы задействуем оставшиеся выводы: PD5 (9), PD6 (11), РВ2 (14) и РВ4—РВ7 (16–19). То, что выводы для управления индикаторами расположены не по порядку — это, конечно, не здорово, нам фактически придется управлять каждым разрядом по отдельности, но обойдемся.
Читать дальшеИнтервал:
Закладка: