Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вот, собственно, и все предварительные наметки, можно рисовать схему платы управления (рис. 14.2). Схема проста, правда, некоторую громоздкость ей придают ключи управления индикаторами, однако все равно ее можно без труда уместить на плату примерно 70x100 мм, а при некоторых усилиях — и на меньшую.
Рис. 14.2. Схема часов на МК AT90S2313(плата управления)
Игольчатый разъем XI типа IDС с 10 контактами— программирующий (в главе 13 мы договаривались, что я буду разводить его в соответствии с 10-контактным ISP-программатором, там же подобный разъем описан подробнее, см. рис. 13.4). Все остальные внешние соединения, кроме питания, — через такой же разъем, но с 16 контактами, два из которых— «земля» и питание.
Подробности
Так как игольчатые разъемы типа IDС с шагом 2,54 мм встречаются в практике изготовления микроэлектронных устройств довольно часто, то стоит разобраться в их маркировке. Начнем с того, что наименование IDC в случае штыревых разъемов для установки на плату относится только к разъемам в кожухе с ключом (именно такие используются для подсоединения жесткого диска в ПК). Бескорпусные подобные разъемы носят название PLD для двухрядных (или PLS для однорядных) типов и более удобны в радиолюбительской практике, т. к. длинные разъемы легко «ломаются» в нужном месте, обеспечивая необходимое число выводов (правда, при этом приходится как-то обозначать на плате первый вывод, чтобы не перепутать ориентацию при включении, см. рис. 13.4). Разметка на плате для обоих типов разъемов (с кожухом и без) одинакова, т. к. все равно приходится учитывать место, которое займет кабельная розетка при ее подсоединении, и мы в этой книге для определенности остановимся на IDC-типе. Разумеется, розетка для установки на плоский кабель (с использованием соответствующего инструмента), может иметь только фиксированное число контактов (из ряда 6, 10, 14, 16, 20, 22, 24, 26, 30, 34, 36, 40, 44, 50, 60…), что нужно учитывать при проектировании.
Цифра после обозначения разъема (IDC-10 или PLD-10), естественно, обозначает число контактов разъема, а следующая буква символизирует его конфигурацию: М (male, «папа») для штыревой части, и F (female, «мама») — для гнездовой. Далее может следовать еще одна буква, которая обозначает ориентацию: S для прямых выводов (разъем перпендикулярен плате), R для повернутых под углом 90° (разъем параллелен плате). Таким образом, приведенное на схеме рис. 14.2 обозначение IDC-10MS означает штыревой («папа») разъем в кожухе с ключом, с 10 прямыми выводами. Соответствующая этому разъему кабельная часть обозначится, как IDC-10F. Бескорпусные PLD-разъемы бывают, естественно, только штыревые, потому для них буквы М и F не указываются (а повернутые под углом 90° дополняются буквой R).
Обратите внимание, что программирующие выводы (кроме Reset) здесь работают в двояком режиме. В нормальном режиме эти выводы работают как выходы на достаточно низкоомную (5,1 кОм) нагрузку. Не помешает ли это процессу программирования? Нет, не помешает— такая нагрузка для программатора вполне приемлема. Более того, «чистые» (нигде не задействованные) выводы программирования все равно следует нагружать «подтягивающими» резисторами, иначе не исключены сбои (об этом мы говорили в главе 12 ). Здесь же роль гасящей помехи нагрузки играют базовые резисторы ключей управления транзисторами, и дополнительные меры не требуются.
Плату индикации делаем отдельно (рис. 14.3). На ней мы располагаем четыре индикатора и две управляющих кнопки (о них далее), а также в точности такой же разъем IDC-16, как и на плате контроллера, причем он должен находиться на стороне платы, противоположной индикаторам. Разводка у него также должна быть идентичной. Эти разъемы мы соединим плоским кабелем.
Рис. 14.3. Схема часов на МК АТ90S2313(плата индикации)
Изготовить такой плоский кабель с разъемами IDC-16F самостоятельно без специального инструмента практически невозможно, потому либо придется такой инструмент приобрести, либо попросить вам установить разъемы на кабель в любой фирме, которая занимается сборкой и ремонтом компьютеров. Можно употребить и готовый кабель даже с большим числом линий, если на плате установить разъемы PLD (т. е. при отсутствии кожуха). Это решение не очень красивое, т. к. при этом кабельная часть разъема будет выходить за пределы ответной на плате, и это нужно предусмотреть в разводке, иначе большой разъем может во что-нибудь упереться.
Разберем немного работу схемы. При включении питания цепочка R1C1 формирует надежный сигнал Reset. Напомню (см. главу 12 ), что ставить эту цепочку необязательно— производитель МК гарантирует нормальный Reset и без каких-либо внешних элементов, однако для лучшей защиты от помех это не повредит, ведь часы у нас должны работать по идее годами в круглосуточном режиме. После установления питания диод VD2 «запрет» батарею, которая имеет напряжение заведомо ниже, чем на выходе стабилизатора. Оба диода с переходом Шоттки, падение напряжения на них не превышает 0,2–0,4 В.
Теперь разберемся с нашими компараторными «примочками». В нормальном режиме кнопка Кн2 разомкнута и на работу схемы не влияет. Напряжение батареи фактически напрямую (делитель R4/R5 делит сигнал в отношении 300/301 и эта ошибка не имеет значения) попадает на инвертирующий вход компаратора. Это напряжение сравнивается с напряжением на стабилитроне VD3, равном примерно 3,9 В (стабилитрон обязательно должен быть маломощный, типа КС139Г в стеклянном корпусе, или соответствующий импортный, в другом случае сопротивление резистора R35 надо снизить примерно в два-три раза). Когда напряжение батареи упадет ниже этого уровня (выбранного с некоторым запасом, поскольку при 3 В МК еще может нормально работать, но часть напряжения батареи упадет на диоде VD2, кроме того, следует учитывать, смена батарейки может произойти не сразу), то компаратор перебросится в состояние логической единицы по выходу.
Программа (см. далее) это зарегистрирует и разделительная точка (пара светодиодов VD1 и VD2, рис. 14.3) перестанет мигать и будет гореть постоянно. Восстановление произойдет сразу, как только батарею сменят на свежую. Та же реакция будет, если просто отключить батарею тумблером «Бат» (S1 на рис. 14.2) или удалить ее. Для того, чтобы в этих случаях вход компаратора не оказывался «висящим в воздухе», и предназначен резистор R5. Ток через него настолько мал (около 1,5 мкА), что на разряд батареи это не оказывает влияния. С8 защищает вход от наведенных на этом резисторе помех.
При пропадании внешнего питания диод VD1 запирается, a VD2 открывается и напряжение батареи поступает на питание МК. Резистор R6 вместе с развязывающим конденсатором С2 предназначены для большей устойчивости работы МК в момент перепада напряжений при переключении питания, для той же цели служит конденсатор С7, установленный параллельно кнопке Кн1 (иначе при перепадах напряжения может спонтанно возникать прерывание, и часы войдут в режим установки, о котором см. далее). Одновременно с переключением питания становится равным нулю напряжение на стабилитроне, а т. к. при этом стабилитрон представляет собой обрыв в цепи, то установлен резистор R36, который служит тем же целям, что и R5. Компаратор работать перестает (точнее, он всегда будет показывать «нормальную» батарею), но нас это не волнует, т. к. индикации все равно нет. Тумблер «Бат» нужен для отключения батареи в случае, если вы хотите остановить часы надолго, а вот тумблер для включения сетевого питания тут совершенно не требуется (разве что на время отладки).
Читать дальшеИнтервал:
Закладка: