Юрий Ревич - Занимательная микроэлектроника
- Название:Занимательная микроэлектроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9775-0080-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная микроэлектроника краткое содержание
Для широкого круга радиолюбителей
Занимательная микроэлектроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Познакомившись с понятием сопротивления и его особенностями, вспомним. Для чего мы все это делали. Ах, да, мы же хотели понять, как практически представить зависимость напряжения от тока! Но ведь мы пока не умеем произвольно изменять ток в проводнике, так? Напряжение изменять просто— нужно взять регулируемый источник питания, как это изображено на рис. 1.1, или, на худой конец, набор батареек, при последовательном соединении которых (1, 2, 3 и более штук) мы получим некий набор напряжений. А вот источников тока (именно тока, а не напряжения) мы еще не имеем. Как же быть?
Выход из этой ситуации показан на рис. 1.3 (заметьте, мы от схематического изображения проводника из длинной проволоки, имеющей некое сопротивление, перешли к стандартному обозначению резисторов, как это делается в настоящих электрических схемах, см. Приложение 1).

Рис. 1.3. Схема для изучения свойств цепи с двумя резисторами
Здесь нам уже не нужен регулируемый источник питания. Питается схема от батареи из трех гальванических элементов, например, типа D, соединенных последовательно (или одной типа 3336, см. Приложение 2 ). Каждый такой элемент (если он еще не был в эксплуатации) дает напряжение примерно 1,6 В, так что суммарное напряжение будет почти 5 В, как и указано на схеме (под нагрузкой и по мере истощения элементов напряжение немного упадет, но ошибка в данном случае не играет большой роли).
Как работает эта схема? Допустим, что движок переменного резистора R1 выведен в крайнее правое (по схеме) положение. Проследим путь тока от плюсового вывода батареи—амперметр, вывод движка резистора R1, крайний правый вывод R1, резистор R2, минусовой вывод батареи. Получается, что резистор R1 в схеме как бы не участвует, поскольку ток от плюсового вывода батареи сразу попадает на R2 (амперметр можно не принимать во внимание — далее мы узнаем, почему это так) и схема становится фактически такой же, как на рис. 1.1. Что покажут наши измерительные приборы? Вольтметр покажет напряжение батареи — 5 В, а показания амперметра легко вычислить по закону Ома: ток в цепи составит 5 В/50 Ом = 0,1 А или 100 мА (напомним еще раз, что это значение приблизительное, т. к. напряжение батареи несколько меньше 5 В).
Теперь поставим движок R1 в среднее положение. Ток в цепи теперь пойдет от плюса батареи через амперметр, вывод движка R1, половину резистора R1, резистор R2 и далее, как и раньше, вернется к минусу батареи. Как изменятся показания приборов? Раньше резистор R1 в деле не участвовал, а теперь участвует, хоть и половинкой. Соответственно, общее сопротивление цепи станет уже не 50 Ом (один резистор R2), а 50 (R2) + 50 (половинка R1), т. е. 100 Ом. Амперметр покажет уже не 100 мА, а 5 В/100 Ом = 0,05 А или 50 мА— в два раза меньше. А вот что покажет вольтметр? Так сразу и не скажешь, не правда ли? Придется считать, для этого рассмотрим отдельно участок цепи, состоящий из R2 с присоединенным к нему вольтметром. Очевидно, что току у нас деться некуда — все то количество заряда, которое вышло из плюсового вывода батареи, пройдет через амперметр, через половинку R1, через R2 и вернется обратно в батарею. Значит, и на этом отдельном участке, состоящем из одного R2, ток будет равен тому, что показывает амперметр, т. е. 50 мА. Получается, как будто резистор R2 подключен к источнику тока!
Замечание
На самом деле это не совсем точно — часть тока, хотя и очень небольшая, все же пойдет через вольтметр, минуя R2. Но на практике, особенно для современных вольтметров, этим всегда пренебрегают (см. далее).
И это действительно так — источник напряжения с последовательно включенным резистором (в данном случае это половинка R1) представляет собой источник тока (хотя и плохой). Так каковы же будут показания вольтметра? Очень просто: из закона Ома следует, что U= I∙ Rгде R — сопротивление нужного нам участка цепи, т. е. R2, и в данном случае вольтметр покажет 0,05 50 = 2,5 В. Эта величина называется падением напряжения , в данном случае — падением напряжения на резисторе R2. Легко догадаться, даже не подключая вольтметр, что падение напряжения на резисторе R1 будет равно тоже 2,5 В, причем его можно вычислить двумя путями: как разницу между 5 В от батареи и падением на R2 (2,5 В), или по закону Ома, аналогично расчету для R2.
Замечание
И это не совсем точно — амперметр тоже имеет некоторое сопротивление и может быть представлен в виде еще одного последовательного резистора. Но, как и в случае вольтметра, этим на практике пренебрегают.
А что будет, если вывести движок переменника в крайнее левое положение? Я сразу приведу результат: амперметр покажет 33 мА, а вольтметр — 1,66 В. Пожалуйста, проверьте это самостоятельно! Если вы получите те же значения, то это будет означать, что вы усвоили закон Ома и теперь умеете отличать ток от напряжения.
В схеме на рис. 1.3 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.
Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.
Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС , т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.
Читать дальшеИнтервал:
Закладка: