Михаил Николаенко - Самоучитель по радиоэлектронике
- Название:Самоучитель по радиоэлектронике
- Автор:
- Жанр:
- Издательство:НТ Пресс
- Год:2006
- Город:Москва
- ISBN:5-477-00054-6 (обл.); 5-477-00125-9 (пер.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Николаенко - Самоучитель по радиоэлектронике краткое содержание
Вы держите в руках книгу, которая представляет собой сборник практических рекомендаций и советов по проектированию, изготовлению и наладке аналоговых и цифровых электронных устройств различного назначения. Каждый читатель в соответствии со своим уровнем подготовки сможет почерпнуть в данной книге рекомендации по выбору и применению стандартных и специализированных радиоэлектронных компонентов, разработке и использованию электрических схем, советы по изготовлению и монтажу печатных плат. В книге приведены основные принципы конструирования и приемы сборки радиоэлектронных устройств, порядок тестирования компонентов, проведения измерений в электрических схемах и ремонта устройств.
Книга рассчитана на читателя с техническим складом ума, которому уже приходилось собирать электронные устройства, и адресована широкому кругу радиолюбителей, как профессионалам, так и начинающим.
Самоучитель по радиоэлектронике - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Если между напряжением питания и напряжением, необходимым для работы устройства, имеется существенная разница (не менее 2 В), то на входе схемы можно поставить выпрямительный мост (рис. 2.40). Тогда полярность напряжения на входе не будет играть никакой роли, хотя падение напряжения на диодах моста неизбежно приведет к потерям мощности. Схемы такого рода применяются только для малых мощностей. Как правило, их не используют для автомобильного радиоприемника и тем более для преобразователя 12/220 В.

Рис. 2.40. Схема защиты против инверсии полярности
2.8.2. Диодные выпрямители
Чтобы создать источник постоянного напряжения питания, используют однополупериодное или двухполупериодное выпрямление. Типичные схемы выпрямителей приведены на рис. 2.41.
Первый вариант (с одиночным диодом, рис. 2.41а) применяется редко из-за низкого КПД и высоких пульсаций выходного напряжения. Наиболее популярен двухполупериодный мостовой выпрямитель, содержащий четыре диода (рис. 2.41б).
Многие трансформаторы имеют две вторичные обмотки, которые можно соединить последовательно, чтобы получить схему со средней точкой и двумя диодами (рис. 2.41в). Она выполняет ту же функцию, что и мостовой выпрямитель, но дешевле и занимает меньше места. На рис. 2.41 г показана форма сигналов в различных точках: до выпрямителя (А), на выходе однополупериодного (В) и двухполупериодного (С) выпрямителя.

Рис. 2.41. Схемы выпрямителей
2.8.3. Повышение выходного напряжения
Интегральные схемы стабилизаторов напряжения с фиксированным выходным напряжением в основном нужны для широко используемых значений. Для промежуточных величин приходится применять регулируемые стабилизаторы, которые не всегда найдешь в нужный момент. Однако можно изменить уровень на выходе стабилизатора постоянного напряжения. Для этого надо сместить потенциал опорного электрода (для корпусов ТО220 это положительный вывод, расположенный посередине), присоединив к нему один или нескольких диодов (рис. 2.42а). Добавление каждого диода увеличивает выходное напряжение приблизительно на 0,6 В.
Таким образом, микросхема 7812 в сочетании с тремя диодами обеспечит выходное напряжение 13,8 В, необходимое для зарядки свинцового аккумулятора на 12 В.
Того же эффекта можно добиться при подключении к опорному электроду делителя (соответствующая схема и формула, позволяющая расчитать выходное напряжение, показаны на рис. 2.42б). Регулировка коэффициента деления с использованием потенциометра дает возможность соответствующим образом изменять напряжение на выходе.

Рис. 2.42. Схема повышения выходного напряжения стабилизатора на диодах ( а) и с использованием резистивного делителя ( б)
2.8.4. Защитный диод
Хотя в стабилизаторе напряжения есть средства защиты от перегрузок в различных режимах (а также защита от перегрева), он может выйти из строя, если напряжение на выходе превысит напряжение на входе. Конденсатор большой емкости, включенный на выходе для сглаживания пульсаций напряжения, усиливает риск такой ситуации при малом потреблении выходного тока, особенно когда от входного напряжения стабилизатора питается другая часть схемы.
Аналогичный режим возникает, если стабилизатор используется для зарядки аккумуляторной батареи и в конце этого процесса происходит ее перезарядка. Конденсаторы, которые расположены после диодного моста, могут разрядиться прежде, чем это произойдет с конденсатором на выходе стабилизатора. В таком случае устройство может выйти из строя в течение десятых долей секунды. Поэтому на выходе всегда ставится конденсатор меньшей емкости, чем на входе. Для безопасной работы между входом и выходом можно поставить защитный диод, через который от выхода схемы будет отводиться избыточный ток (рис. 2.43).

Рис. 2.43. Защитный диод в схеме стабилизатора
2.8.5. Стабилизатор напряжения в качестве генератора тока
Простые схемы генератора тока приводились выше. Стабилизатор напряжения также может работать в режиме генератора тока. С этой целью предпочтительнее использовать регулируемую модель, например LM317, обладающую небольшим внутренним опорным напряжением высокой стабильности. В данном случае его величина составляет 1,2 В. Для задания тока достаточно включить последовательно с нагрузкой резистор (рис. 2.44). Следует иметь в виду, что в этом резисторе может выделяться значительная мощность. Генератор тока используется в самых разных областях, чаще всего он применяется для зарядки никель-кадмиевого аккумулятора.

Рис. 2.44. Генератор тока из стабилизатора напряжения
2.8.6. Повышенное входное напряжение
Сегодня редко можно увидеть источник питания малой или средней мощности, в котором не использовался бы один из широко представленных на рынке интегральных стабилизаторов. Диапазон их параметров очень велик: модели с положительным и отрицательным выходным напряжением, постоянным или регулируемым, в корпусах типа ТО220 или ТОЗ. Входное напряжение этих достаточно надежных компонентов не должно превышать предельного значения, составляющего, как правило, 40 В для стабилизаторов с выходным напряжением 24 В и 35 В — для других типов.
С учетом рассеиваемой мощности правильнее говорить о допустимой разности напряжений между выходом и входом.
Так, микросхема 7805, имеющая выходное напряжение 5 В и максимальный ток 1 А, при питании от входного напряжения 9 В рассеивает мощность, равную (9–5) х 1 = 4 (Вт). Стабилизатор с входным напряжением 24 В и током 250 мА при выходном напряжении 5 В должен рассеивать мощность, приблизительно равную 4,75 Вт. При этом необходимо позаботиться об охлаждении устройства.
Схема, данная на рис. 2.45, позволяет использовать для питания стабилизатора напряжение, превышающее допустимое максимальное значение за счет включения на входе дополнительного балластного резистора. При выборе типа резистора следует иметь в виду, что рассеиваемая им мощность также достигает значительной величины.

Рис. 2.45. Уменьшение входного напряжения
Читать дальшеИнтервал:
Закладка: