Евгений Айсберг - Цветное телевидение?.. Это почти просто!
- Название:Цветное телевидение?.. Это почти просто!
- Автор:
- Жанр:
- Издательство:Энергия
- Год:1975
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Евгений Айсберг - Цветное телевидение?.. Это почти просто! краткое содержание
В виде занимательных бесед рассматривается цвет как физическое явление и объясняется его психофизиологическое восприятие; излагаются основы колориметрии. Рассказывается о принципах последовательной и одновременной передачи цветного телевизионного изображения и приводятся характеристики основных систем цветного телевидения.
Приводится описание типовой схемы телевизора для системы SECAM и методов настройки такого телевизора.
Рассчитана на широкий круг радиолюбителей.
Цветное телевидение?.. Это почти просто! - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Л. — Мой друг, я еще раз должен разочаровать тебя и сказать, что Такая система уже очень давно была предложена.
Н. — Несчастный я! Почему я не родился раньше! Уже все изобрели до меня!.. А теперь ты, по-видимому, еще скажешь, что эта система ничего не стоит и что от нее уже давно отказались.
Л. — Ну в этом-то, дорогой друг, ты заблуждаешься. Этот принцип и в наши дни широко используется в замкнутых телевизионных системах. Так, например, благодаря такой системе сотни студентов медиков, сидя в обычной аудитории, могут наблюдать за всем ходом хирургической операции, не мешая своим присутствием работающим в операционной людям. Цвет в данном случае позволяет лучше видеть, что происходит в операционной. Это показывает, что твоя идея неплоха, но ее применение несколько ограничено, а кроме того, в подобных системах приходится прибегать к определенной коррекции.
Ты предлагаешь использовать три телевизионные камеры, каждая из которых снабжена собственным объективом с цветным фильтром. Представляешь ли ты, что в этом случае все три объектива «увидят», а следовательно, и передадут сцену под различными углами?
Н. — Да, об этом-то я и не подумал. Ведь даже если расположить наши камеры одну рядом с другой, то полученные изображения будут несколько различаться, особенно значительные различия будут для предметов, находящихся на переднем плане. Но я твердо убежден, что ты дашь мне средство для устранения этого недостатка.

Л. — Сама логика подсказывает это средство: использовать только один объектив. Проходящие через этот объектив световые лучи надлежит равномерно распределить между тремя камерами, снабженными необходимыми цветными фильтрами.
Н. — Легко сказать, но я не вижу, как это можно осуществить…
Л. — Совсем несложно с помощью системы отражающих и полупрозрачных зеркал, которые также называют дихроичными .
Н. — Что это еще за зеркала?
Л. — Отражающее зеркало, как ты знаешь, представляет собой стекло, одна сторона которого покрыта амальгамой, состоящей из ртути и олова. В дихроичном зеркале эта амальгама заменена несколькими (в среднем двенадцатью) чрезвычайно тонкими (порядка сотни нанометров!) слоями прозрачных материалов, имеющими поочередно низкие и высокие коэффициенты преломления. Такое зеркало отражает все световые волны выше (или ниже) определенной длины и пропускает все остальные.
Н. — Значит, дихроичное зеркало можно уподобить фильтру верхних или нижних частот?
Л. — Это сравнение вполне оправдано. Как и в электрических фильтрах, здесь нет четкой границы между тем, что пропускается, и тем, что отражается: переход от одного к другому постепенный. Мы называем «синим» дихроичное зеркало, которое отражает волны длиной до 460 нм и пропускает волны длиной свыше 500 нм. Названием «красное» обозначается дихроичное зеркало, отражающее волны длиной свыше 580 нм и пропускающее все более короткие волны.
Теперь посмотри на расположение моих зеркал (рис. 24).

Рис. 24. Прошедшие через единственный объектив световые лучи с помощью системы из обычных ( З) и дихроичных ( ДЗ B) и ( ДЗ R) зеркал разделяются на три пучка, которые через соответствующие фильтры подаются на трубки трех телевизионных камер В, Gи R.
Поступающий из объектива свет сначала попадает на дихроичное зеркало ДЗ В , которое отражает синие лучи и пропускает зеленые и красные. Отраженные синие лучи с помощью обычного зеркала 3 направляются в выделенную для синей составляющей камеру, куда они попадают, пройдя через синий светофильтр.
Н. — Рассматривая рисунок, я вижу, что прошедшие через дихроичное зеркало ДЗ В лучи попадают на другое дихроичное зеркало, обозначенное ДЗ R . Оно отражает красные лучи, но пропускает зеленые, которые направляются в выделенную для них камеру, проходя на этом пути, естественно, через зеленый светофильтр. Красные же лучи после отражения обычным зеркалом 3 и прохождения через красный светофильтр поступают в соответствующую камеру.

Л. — Именно так по принципу, который мы сейчас разобрали, устроены все телевизионные камеры, используемые в студиях цветного телевидения. В этих камерах можно обнаружить другие приспособления и другие зеркала; в них используются также различные оптические устройства, предназначенные для коррекции некоторых искажений, как, например, астигматизма, возникающего при прохождении лучей через дихроичные зеркала Но нам нет необходимости рассматривать все эти подробности Попутно я могу сказать, что искажения могут возникнуть также и в процессе приема при проецировании изображений на экран


Н. — Если проекторы установлены точно, то я не вижу, что могло бы внести искажения в полученное изображение.
Л. — Исходящий из стоящего в середине проектора прямоугольный поток света дает на экране изображение прямоугольной формы. Но изображения, проецируемые крайними проекторами, на экране получаются в форме трапеции (рис. 25).

Рис. 25. Только одна из трех, размещенная в середине проекционная трубка Gдает на экране свободное от трапецеидальной аберрации изображение.
Но успокойся: у оптиков в их мешке не один фокус и им удается исправить эту трапецеидальную аберрацию. Радиотехники также успешно справляются с этой задачей.
Н. — А у меня есть еще одна идея. Почему бы при приеме не использовать ту же систему из обычных и дихроичных зеркал? Обратимость явлений.
Л. — Незнайкин, это и делают. В тех случаях, когда не требуется проецировать изображение на большой экран, можно получить три изображения на экранах обычных электронно-лучевых трубок, а затем с помощью системы, состоящей из цветных фильтров и зеркал, совместить их так, чтобы получить цветное изображение Такое устройство называют « тринескопом ».
Читать дальшеИнтервал:
Закладка: