Юрий Ревич - Занимательная электроника

Тут можно читать онлайн Юрий Ревич - Занимательная электроника - бесплатно ознакомительный отрывок. Жанр: sci_radio, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательная электроника
  • Автор:
  • Жанр:
  • Издательство:
    БХВ-Петербург
  • Год:
    2015
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-9775-3479-6
  • Рейтинг:
    2.9/5. Голосов: 921
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Юрий Ревич - Занимательная электроника краткое содержание

Занимательная электроника - описание и краткое содержание, автор Юрий Ревич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.

Для широкого круга радиолюбителей

Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок

Занимательная электроника - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Юрий Ревич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Найти дополнение до 1 для вычитаемого (инвертировать его биты).

2. Прибавить к результату 1, чтобы найти дополнение до 2.

3. Сложить уменьшаемое и дополнение до 2 для вычитаемого.

Заметим, что все сложности с этими многочисленными дополнениями связаны с наличием нуля в ряду натуральных чисел — если бы его не было, дополнение было бы всего одно, и операция вычитания упростилась. Так может, греки все же были в чем-то правы?

В заключение обратим внимание на еще одно замечательное свойство двоичных чисел, которое часто позволяет значительно облегчить операции умножения и деления, а именно: умножению на 2 соответствует операция сдвига всех разрядов числа на один разряд влево, а операции деления на 2 — вправо. Крайние разряды (старший при умножении и младший при делении) в общем случае при этом должны теряться, но в микропроцессорах есть специальный бит переноса, в который эти «потерянные» разряды помещаются. Противоположные крайние разряды (младший при умножении и старший при делении) в общем случае замещаются нулями, но могут и замещаться значением бита переноса, что позволяет без лишних проблем делить и умножать числа с разрядностью больше одного байта. Как можно догадаться, умножению и делению на более высокие степени двойки будет соответствовать операция сдвига в нужную сторону на иное (равное степени) число разрядов.

Излишне говорить, что операцию сдвига разрядов в электронных схемах производить неизмеримо проще, чем операции деления и умножения. Есть и специальные схемы для этой операции — сдвиговые регистры, которые мы также будем «проходить» (в главе 16 ).

Дробные числа

Сразу заметим, что в некомпьютерной электронике дробными числами стараются не пользоваться. При необходимости их переводят в целые, умножая на соответствующую степень десяти (а чаще — даже на степень 2, что проще), при этом все остальные участвующие в расчетах величины также масштабируются в нужное число раз. Затем при выводе, к примеру, на цифровой дисплей, запятая просто устанавливается в нужном месте (иногда заранее, и без возможности изменения ее положения). То есть, для цифровой схемы не существует значения температуры, равного 30,81 градуса, а есть число 3081 в BCD-формате. Примерно те же действия мы производили, когда конструировали цифровой термометр в главе 13 , — на самом деле он показывает целое число милливольт в нужном масштабе.

И все же — как мы можем при необходимости представить дробные числа, если двоичные разряды ничего о таковых «не знают» и могут воспроизводить только целые числа в соответствии с формулой (4)? Мы не будем рассматривать расширение этой формулы, включающее в себя представление в позиционной системе не только целых, но и всех действительных чисел «с плавающей запятой», т. к. в электронике такой вариант не хождения не имеет. В электронике и компьютерной технике используют другой способ представления действительных чисел — с помощью мантиссы и порядка, в так называемом нормализованном виде . При этом место запятой фиксируется:

0,0125 = 0,125·10 -1,

1254,81 =0,125481·10 4.

Разумеется, в электронных схемах все это лучше делать в двоичной форме, записывая порядок, как степень двух (скажем, операция выравнивания порядков при сложении таких чисел сведется просто к сдвигу мантиссы, как мы видели ранее).

Легко заметить, что и саму запятую, и основание степени тут можно опустить, записывая в память лишь мантиссу и порядок — конечно, если всегда помнить, что мы имеем в виду. Например, можно сделать так: отвести в памяти три байта, из которых первые два хранят цифры мантиссы, а третий отведен под порядок. Легко также подсчитать, каков будет диапазон чисел, могущих быть представленными таким образом, — число, которое представляет мантиссу, будет укладываться в диапазон от -32768 до 32767, т. е. иметь от 4 до 5 значащих десятичных цифр. На практике операции с дробными числами можно производить несколько проще, и мы будем их осваивать в главе 20 .

Коды, шифры и дешифраторы

По необходимости кратко коснемся темы кодирования и связанной с ней темы шифрования. Слово «код» (особенно в сочетании двоичный код) вы будете встречать очень часто, и следует понимать, что именно подразумевается под этим понятием в том или ином случае. Кроме того, сразу забежим немного вперед и покажем, как обращаться с реальными схемами на этом примере.

Код в общем случае — это совокупность правил (т. е. алгоритм) для представления информации в какой-либо форме. Процесс применения к информационному сообщению этих правил называется кодированием , при этом полученная группа знаков или сигналов также называется кодом . Обратная операция — восстановление сообщения по известному коду — носит название декодирования . Например, код Морзе позволяет записать с помощью двух знаков — точки и тире — любую букву или цифру. Закодированное таким образом сообщение можно передавать с высокой надежностью в различных средах, характеризующихся высоким уровнем помех (в виде звуковых сигналов, в том числе по радио, в виде вспышек света разной длительности, перестукиванием через стены и т. п.).

Понятие кода применимо к формам представления информации лишь в тех случаях, когда между содержанием сообщения и его представлением в какой-либо форме существует взаимно-однозначное соответствие, т. е. по данной записи смысл сообщения может быть восстановлен единственным образом (если не считать возможных искажений при передаче). В этом смысле понятие кода может быть лишь ограниченно применимо, например, к письменной или устной речи, для которых характерна многозначность смысловых единиц. В гуманитарных дисциплинах, как правило, понятие кода используется в качестве метафоры (например, «смысловой код произведения искусства»).

Понятие кода нашло наиболее широкое применение для представления информации в цифровой форме. Самым распространенным цифровым кодом является двоичный код (т. е. представление любого знака или числа в виде набора двоичных цифр 0 и 1). Двоичный код, в свою очередь, служит основой для различных кодов, представляющих конкретные разновидности информации. В информатике часто также говорят про исходный код программ , что означает текст программы, записанный на одном из языков программирования.

На рис. 14.6 приведены различные стандартные коды для первых девяти букв латинского алфавита. Следует отметить, что азбука Брайля — система письменности для слепых (где жирная точка соответствует наличию выпуклости, а «худая» — ее отсутствию) — в полной мере является двоичным кодом, мало того, из принципа ее построения было многое заимствовано в современных системах компьютерных кодировок. А вот код Морзе, хотя и состоит из точек и тире, двоичным кодом не является: в нем используется как минимум еще один знак — пауза. Зато код Морзе намного экономичнее обычных двоичных кодов, таких, как ASCII, поскольку имеет переменное число точек-тире для каждого символа, и часто встречающиеся буквы в нем короче, чем редко встречающиеся.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Юрий Ревич читать все книги автора по порядку

Юрий Ревич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная электроника отзывы


Отзывы читателей о книге Занимательная электроника, автор: Юрий Ревич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x