Юрий Ревич - Занимательная электроника
- Название:Занимательная электроника
- Автор:
- Жанр:
- Издательство:БХВ-Петербург
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-9775-3479-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрий Ревич - Занимательная электроника краткое содержание
На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям. Третье издание дополнено сведениями о популярной платформе Arduino, с которой любому радиолюбителю становятся доступными самые современные радиоэлектронные средства.
Для широкого круга радиолюбителей
Занимательная электроника - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В большинстве случаев нам такой точности и не требуется — помните, что и сами сопротивления имеют разброс по номиналу, и в большинстве обычных схем допуски на номиналы стандартных компонентов могут быть довольно велики (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные параметры, то с помощью стандартных компонентов вы все равно этого не добьетесь — параметры будут «гулять» (в пределах допусков, естественно) от дуновения ветерка из форточки, и в таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на резистор 1,1 кОм, — не наш метод!
Все конденсаторы ведут свою родословную от лейденской банки, названной так по имени голландского города Лейдена, в котором трудился ученый середины XVIII века Питер ван Мушенбрук.
Банка эта представляла собой большой стеклянный стакан, обклеенный изнутри и снаружи станиолем (тонкой оловянной фольгой, использовавшейся в те времена для тех же целей, что и современная алюминиевая, — металл алюминий еще не был известен). Так как банку (рис. 5.4) заряжали от электростатической машины (другого искусственного источника электричества тогда еще не придумали), которая запросто может выдавать напряжения в несколько сотен тысяч вольт, действие ее было весьма впечатляющим — в учебниках физики любят приводить случай, когда Мушенбрук продемонстрировал эффект от разряда своей банки через цепь гвардейцев, держащихся за руки. Ну не знали тогда, что электричество может и убить — гвардейцам сильно повезло, что емкость этого примитивного конденсатора была весьма невелика, и запасенной энергии хватило только на то, чтобы люди ощутили чувствительный удар током!

Рис. 5.4. Прадедушка современных конденсаторов — лейденская банка:
1— стеклянный стакан; 2— внешняя обкладка из станиоля; 3— внутренняя обкладка; 4— контакт для заряда
Схематическое изображение простейшего конденсатора показано на рис. 5.5.

Рис. 5.5. Схематическое изображение плоского конденсатора и формула для расчета его емкости: С— емкость, Ф; S— площадь пластин, м 2; d— расстояние между пластинами, м; s— диэлектрическая проницаемость
Из формулы, приведенной на рисунке (она носит специальное название формула плоского конденсатора , потому что для конденсаторов иной геометрии соответствующее выражение будет другим), следует, что емкость тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Что же такое емкость? Согласно определению, емкость есть отношение заряда (в кулонах) к разности потенциалов на пластинах (в вольтах): С= Q/ U, т. е. размерность емкости есть кулон/вольт. Такая единица называется фарадой, по имени знаменитого английского физика и химика Майкла Фарадея(1791–1867) .
Следует подчеркнуть, что величина емкости есть индивидуальная характеристика конденсатора — подобно тому, как номинальное сопротивление есть индивидуальная характеристика конкретного резистора, — и характеризует количество энергии, которое может быть в нем запасено. Емкость в одну фараду весьма велика — обычно на практике используют микрофарады и еще более мелкие единицы, скажем, емкость упомянутой лейденской банки составляла величину всего-навсего порядка 1 нФ.
Смысл понятия емкости раскрывается так: если напряжение от источника напряжения составляет 1 В, то емкость в одну нанофараду, как у лейденской банки, может запасти 10 -9кулон электричества. Если напряжение составит 10 5вольт (типичная величина при заряде от электростатической машины, как в опытах Мушенбрука), то и запасенный на этой емкости заряд увеличится в той же степени — до 10 -4кулон. Любой конденсатор фиксированной емкости сохраняет это соотношение — заряд на нем в любой момент времени тем больше, чем больше напряжение, а сама величина заряда определяется номинальной емкостью.
Если замкнуть конденсатор на резистор, то в первый момент времени он будет работать, как источник напряжения с нулевым выходным сопротивлением и номинальным напряжением той величины, до которой конденсатор был заряжен, т. е. ток через резистор определяется по обычному закону Ома. Скажем, в случае гвардейцев Мушенбрука характерное сопротивление цепи из нескольких человек, взявшихся за руки, составляет порядка 10 4Ом — т. е. ток при начальном напряжении на конденсаторе 10 5В составит 10 А, что примерно в 10 000 раз превышает смертельное для человека значение тока! Выручило гвардейцев то, что такой импульс был крайне кратковременным — по мере разряда конденсатора, т. е. стекания заряда с пластин, напряжение быстро снижается: емкость-то остается неизменной, потому при снижении заряда, согласно формуле на рис. 5.5, падает и напряжение.
Интересно, что при фиксированном заряде (если цепь нагрузки конденсатора отсутствует) можно изменить напряжение на нем, меняя емкость. Например, при раздвижении пластин плоского конденсатора емкость его падает (т. к. расстояние d между пластинами увеличивается), потому для сохранения заряда напряжение должно увеличиться — что и происходит на деле, когда в эффектном школьном опыте между раздвигаемыми пластинами конденсатора проскакивает искра при превышении предельно допустимого напряжения пробоя для воздуха.
На рис. 5.6 изображено подключение конденсатора С к нагрузке R . Первоначально переключатель К ставится в нижнее по схеме положение, и конденсатор заряжается до напряжения батареи Б . При переводе переключателя в верхнее положение конденсатор начинает разряжаться через сопротивление R , и напряжение на нем снижается. Насколько быстро происходит падение напряжения при подключении нагрузки? Можно предположить, что чем больше емкость конденсатора и сопротивление резистора нагрузки, тем медленнее происходит падение напряжения. Правда ли это?

Рис. 5.6. Подключение конденсатора к нагрузке:
К— переключатель, Б— батарея, С— конденсатор; R— сопротивление нагрузки
Читать дальшеИнтервал:
Закладка: