И. Хабловски - Электроника в вопросах и ответах

Тут можно читать онлайн И. Хабловски - Электроника в вопросах и ответах - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Радио и связь, год 1984. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Электроника в вопросах и ответах
  • Автор:
  • Жанр:
  • Издательство:
    Радио и связь
  • Год:
    1984
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.15/5. Голосов: 131
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

И. Хабловски - Электроника в вопросах и ответах краткое содержание

Электроника в вопросах и ответах - описание и краткое содержание, автор И. Хабловски, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге популярно в форме вопросов и ответов объясняются физические основы электроники, электронные компоненты и схемы, особенности их применения. Удачно сочетается широта тематики — от дискретных полупроводниковых приборов до интегральных микросхем с простотой и наглядностью изложения материала.

Для широкого круга читателей.

Электроника в вопросах и ответах - читать онлайн бесплатно полную версию (весь текст целиком)

Электроника в вопросах и ответах - читать книгу онлайн бесплатно, автор И. Хабловски
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В простой схеме ограничителя последовательного типа (рис. 3.17) диод проводит, когда на аноде присутствует положительное относительно катода напряжение (проводящее направление), — в течение положительного (верхнего) полупериода входного напряжения и не проводит, когда напряжение на аноде отрицательно (обратное направление), — в течение отрицательного полупериода входного напряжения.

Рис 317 Простой последовательный ограничитель снизу Выходное напряжение на - фото 76

Рис. 3.17. Простой последовательный ограничитель снизу

Выходное напряжение на нагрузочном резисторе состоит только из верхних полупериодов синусоиды. Если направление включения диода изменить на обратное, то на выходе появляются только нижние полупериоды входного напряжения. Уровень ограничения определяет «нулевая линия» [10] Точнее, если учесть напряжение на диоде, линия отсечки проходит на другом уровне, чем нулевая линия. . Возможно также ограничение и на другом уровне. Изменение уровня ограничениядостигается путем добавления источника постоянного напряжения, смещающего диод в направлении проводимости либо в обратном направлении. В схеме на рис. 3.18 происходит частичное ограничение верхней половины синусоиды. Устройства, ограничивающие «верхние» половины синусоид, чаще всего называются односторонними ограничителями . Существуют также двусторонние ограничители.

Рис 318 Последовательный ограничитель сверху со смещением Как используется - фото 77

Рис. 3.18. Последовательный ограничитель сверху со смещением

Как используется диод для выпрямления переменного напряжения?

Существует много схем выпрямителей на диодах. Диод может работать как выпрямитель, например в схеме, изображенной на рис. 3.17. Если выходное напряжение, состоящее из полупериодов входного переменного напряжения той же самой полярности, подать затем на сглаживающий фильтр, то на выходе фильтра получают сглаженное постоянное напряжение, т. е. напряжение, которое является средним значением колебания на выходе выпрямителя. Таким образом, диод участвует в процессе преобразования переменного напряжения в постоянное. Этот процесс называется выпрямлением .

Более подробно выпрямители рассматриваются в гл. 6 .

Как используются диоды для детектирования сигналов?

К диоду, работающему в режиме детектирования (демодуляции), подводится сигнал высокой частоты, промодулированный по амплитуде, частота которого значительно ниже (рис. 3.19). Это может быть электрический сигнал, соответствующий звуковым сигналам. В этом случае задача диода заключается в ограничении одной половины модулированного сигнала, что позволяет затем с помощью фильтра выделить модулирующее напряжение, т. е. сигнал низкой частоты. Фильтр RС-типа не пропускает, а исключает высокочастотные составляющие и обеспечивает появление на выходе только составляющих модулирующего сигнала. В этом случае диод работает так же, как переключающая схема — вентиль. Вопросы детектирования более детально обсуждаются в гл. 11 .

Рис 319 Схема диодного детектора а и формы входного б и выходного - фото 78 Рис 319 Схема диодного детектора а и формы входного б и выходного - фото 79 Рис 319 Схема диодного детектора а и формы входного б и выходного - фото 80

Рис. 3.19. Схема диодного детектора ( а) и формы входного ( б) и выходного напряжений без емкости ( в) и с емкостью ( г)

Что такое диодные вентили?

Это схемы с диодами, часто встречающиеся в цифровой технике. В них диоды используются как элементы, отпирающие либо запирающие путь для сигнала со входа на выход. Разработано много различных схем вентилей. Более подробно они будут рассмотрены в гл. 12 .

Глава 4

ТРАНЗИСТОРЫ И ТРИОДЫ. ОСНОВНЫЕ СХЕМЫ

Что такое транзистор?

Это полупроводниковый прибор с тремя электродами, который обладает свойством усиления электрического сигнала. По принципу работы транзисторы делятся на биполярные и униполярные или полевые, а по технологии на плоскостные (с р-n переходом) и точечные. Биполярные плоскостные транзисторы с точки зрения технологии также подразделяются на дрейфовые, диффузионные, планарные, сплавные, меза и др. С точки зрения используемого полупроводникового материала транзисторы делятся на германиевые, кремниевые и арсенидо-галлиевые.

Транзистор является активным элементом, который в большинстве электронных схем полностью заменяет ранее используемые вакуумные приборы (электронные лампы). По сравнению с электронной лампой транзистор обладает следующими преимуществами: малые габариты, большой срок службы и большая надежность, высокая устойчивость к механическим ударам, низкое напряжение питания, отсутствие напряжения накала. Недостатки транзистора (по сравнению с лампами) — ограниченные мощность и рабочее напряжение, большая чувствительность к изменениям температуры и меньший диапазон рабочих температур, малая стойкость к коротким замыканиям и искрениям.

Что такое биполярный плоскостной транзистор?

Это транзистор, образуемый при соединении двух переходов, т. с. состоящий из трех областей; р-n-р или n-р-n . В таком транзисторе существует два вида носителей: основные и неосновные, отсюда название — биполярный. Электроды транзистора имеют следующие названия: эмиттер (Э), база (Б), коллектор (К), причем эмиттер и коллектор имеют одинаковый тип проводимости, а база, разделяющая эмиттер и коллектор, — противоположный. Транзисторы типа n-р-n и р-n-р , а также их графическое обозначение представлены на рис. 4.1.

Рис 41 Структуры транзисторов а nрn б рnр и их графические - фото 81

Рис. 4.1. Структуры транзисторов

аn-р-n ; бр-n-р и их графические изображения

Как работает биполярный транзистор?

В типичных условиях работы транзистор подключен к источнику постоянного тока таким способом, что переход эмиттер — база (эмиттерный переход) смещен в проводящем направлении, а переход коллектор — база (коллекторный переход) в обратном направлении (рис. 4.2).

Рис 42 Прохождение носителей зарядов в биполярном транзисторе При таком - фото 82

Рис. 4.2. Прохождение носителей зарядов в биполярном транзисторе

При таком смещении в случае р-n-р транзистора из области эмиттера в область базы переходят дырки, являющиеся основными носителями области эмиттера p -типа. Большинство дырок диффундирует через базу и достигает коллектора. Часть дырок исчезает в базе вследствие рекомбинации (повторного соединения) с основными носителями базы, т. е. электронами. В эмиттере также происходит рекомбинация дырок с электронами, проходящими из базы к эмиттеру. Электронный ток базы в общем значительно меньше дырочного тока эмиттера, поскольку база тонкая и легирована значительно меньше эмиттера. Ток коллектора создает дырки, приходящие от эмиттера, его значение (обычно несколько миллиампер) зависит непосредственно от напряжения смещения на переходе эмиттер — база (обычно около 0,2 В) и мало зависит от напряжения, смещающего в обратном направлении коллекторный переход ( U кэоколо 10 В). От напряжения U бэзависит как ток эмиттера, так и ток базы (обычно несколько десятков микроампер), поэтому можно утверждать, что большой ток коллектора зависит от малого тока базы, т. е. малые изменения тока базы вызывают большие изменения тока коллектора.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


И. Хабловски читать все книги автора по порядку

И. Хабловски - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Электроника в вопросах и ответах отзывы


Отзывы читателей о книге Электроника в вопросах и ответах, автор: И. Хабловски. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x