Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е]

Тут можно читать онлайн Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е] - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci_radio, издательство Мир, год 1993. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Искусство схемотехники. Том 3 [Изд.4-е]
  • Автор:
  • Жанр:
  • Издательство:
    Мир
  • Год:
    1993
  • Город:
    Москва
  • ISBN:
    5-03-002954-0 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
  • Рейтинг:
    3.1/5. Голосов: 301
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Пауль Хоровиц - Искусство схемотехники. Том 3 [Изд.4-е] краткое содержание

Искусство схемотехники. Том 3 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.

На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.

Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Искусство схемотехники. Том 3 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)

Искусство схемотехники. Том 3 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Модуль комплексного числа равен

| N| = | а + bi | = [( а + bi )( a — bi )] 1/2= ( а 2+ Ь 2) 1/2, т. е. | N| = ( NN*) 1/2.

Для того чтобы определить модуль комплексного числа, нужно умножить это число на сопряженное и взять квадратный корень от произведения. Модуль произведения (или частного) двух комплексных чисел представляет собой просто произведение (или частное) их модулей.

Для действительной и мнимой частей комплексного числа иногда используется следующая запись:

действительная часть N= Re( N),

мнимая часть N= Im( N).

Для того чтобы получить действительную или мнимую часть, нужно записать число в виде а + bi и взять а или b . При этом может потребоваться выполнить умножение или деление, так как комплексное число может быть весьма запутанным.

Для представления комплексных чисел иногда используют комплексную плоскость. Она представляет собой такую же плоскость, как и плоскость с координатами х, у . При изображении комплексного числа действительная часть берется как координата х , а мнимая — как у , т. е. на этой плоскости используются оси ДЕЙСТВИТЕЛЬНАЯ ( х ) и МНИМАЯ ( у ), как показано на рис. Б.1.

Рис Б1 Используя эту аналогию иногда комплексные числа записывают с - фото 281

Рис. Б.1.

Используя эту аналогию, иногда комплексные числа записывают с помощью координат х, у :

а + bi <-> ( a, b ).

Как и обычные точки с координатами х, у , комплексные числа можно представлять в полярных координатах; это представление называют тригонометрическим. Например, число а + bi можно записать и так (рис. Б.2):

a + bi = ( R, θ ),

где R = (а 2+ b 2) 1/2и = arctg( b / a ).

Если учесть, что

e ix = cos x + i sin x

(это выражение, известное под названием формулы Эйлера, нетрудно получить, если представить экспоненциальную функцию в виде ряда Тейлора), то получим показательную форму записи:

N= a + bi = Re iθ ,

R = | N| = ( NN*) 1/2= ( а 2+ b 2) 1/2,

θ = arctg( b / a ),

т. е. модуль комплексного числа R и угол θ — это просто полярные координаты точки, представляющей число на комплексной плоскости. Показательная (или полярная) форма представления удобна для выполнения операций умножения (или деления) комплексных чисел - модули чисел перемножаются (делятся), а углы — аргументы складываются (вычитаются):

( ae ib )( ce id ) = ace i(b+d) .

Рис Б2 И наконец для того чтобы перейти от представления в полярных - фото 282

Рис. Б.2.

И наконец, для того чтобы перейти от представления в полярных координатах к представлению в прямоугольных координатах, следует просто воспользоваться формулой Эйлера:

ae ib = a cos b + ia sin b ,

т. е. Re(ae ib) = a cos b , Im( ae ib ) = a sin b .

Для того чтобы умножить комплексное число на экспоненциальную функцию, необходимо просто выполнить соответствующие операции умножения:

N= a + bi ,

N ix = ( а + bi ) (cos х + i sin х ) = ( a cos x — b sin x ) + i ( b cos x + a sin x ).

Дифференциальное исчисление

Начнем с понятия функции f( x ), т. е. формулы, которая для каждого значения х позволяет найти значение у= f( x ). Функция f( х ) является однозначной, если каждому значению х она ставит в соответствие единственное значение у . Понятие функции у= f( x ) иллюстрирует график, представленный на рис. Б.З.

Рис Б3 Производная у по х определяется углом наклона графика у к оси х - фото 283

Рис. Б.3.

Производная у по х определяется углом наклона графика у к оси х . Если вы проведете касательную к графику функции в некоторой точке, то наклон касательной в этой точке и есть dy / dx , т. е. производная сама по себе представляет функцию, так как ее значение определено в каждой точке. На рис. Б.З наклон в точке (1,1) определяется значением 2, а в точке начала координат он нулевой (немного ниже сказано, как вычисляется производная).

Пользуясь математическими терминами, можно сказать, что производная - это предел, к которому стремится отношение приращения у( Δу ) к приращению х( Δ х), когда Δ х стремится к нулю.

Процитируем песенку, которую когда-то сочинили по этому поводу в Гарвардском университете (авторы Том Лехрер и Льюис Бранском):

В исходной функции от х(иначе у, в целях упрощенья)
Берем значенье аргумента, чуть меняем,
запоминаем Приращенье…
Сменили аргумент. Теперь о функции и до и после
Этого момента:
Ее мы вычислим, потом разделим y -рост на
приращенье Аргумента.
Идем дальше: разность x-ов устремив к нулю
и изменения в частном наблюдая,
Должны найти… должны (?), мне кажется, найдем
Предел, тем самым и работу завершая.
А найденный предел для функции исходной
И называют производной.

(На мелодию «Что-то должно измениться». W. Benton Overstreet.)

Дифференцирование - это прямая операция, и для основных функций составлены стандартные таблицы производных. Ниже приводятся основные правила нахождения производных ( u и v — это функции х ):

Некоторые производные

Последнее правило представляет собой правило дифференцирования сложной функции, оно распространяется на цепочку из любого числа функций и очень полезно для вычисления производных. Иногда функцию дифференцируют, чтобы определить значение производной в некоторой точке. В других случаях требуется найти минимум или максимум функции. Так как в точке экстремума производная равна нулю, то найденную производную приравнивают к нулю и разрешают полученное уравнение относительно х .

Рассмотрите следующие примеры:

Приложение В ЦВЕТНАЯ МАРКИРОВКА РЕЗИСТОРОВ С ДОПУСКОМ 5 Маломощные - фото 284

Приложение В

ЦВЕТНАЯ МАРКИРОВКА РЕЗИСТОРОВ С ДОПУСКОМ 5 %

Маломощные проволочные и пленочные резисторы с допуском от 2 до 20 % имеют стандартные значения сопротивлений и стандартную схему цветной маркировки. У начинающего это может вызвать подозрения, но на самом деле такая маркировка позволяет легко определить сопротивление стоящего в схеме резистора по его цвету, а не по цифровой маркировке, которую не сразу разглядишь. Стандартные значения сопротивлений резисторов выбраны так, что смежные значения отличаются на 10 % для резисторов с допуском 2 и 5 % и на 20 % для допусков 10 и 20 %. С помощью цветной маркировки можно задать многие значения сопротивлений, но не все они существуют на практике.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Искусство схемотехники. Том 3 [Изд.4-е] отзывы


Отзывы читателей о книге Искусство схемотехники. Том 3 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x