Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]
- Название:Искусство схемотехники. Том 1 [Изд.4-е]
- Автор:
- Жанр:
- Издательство:Мир
- Год:1993
- Город:Москва
- ISBN:5-03-002337-2 (русск.); 5-03-002336-4; 0-521-37095-7 (англ.)
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.
На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.
Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Искусство схемотехники. Том 1 [Изд.4-е] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 5.30.
В ней используется пара КМОП-инверторов (в виде цифровых логических схем, которые будут подробно рассматриваться в гл. 8-11 ), соединение которых между собой образует некоторую разновидность RC релаксационного генератора с выходным сигналом в виде прямоугольного колебания. Реальные измерения, приведенные для этой схемы, работающей на частоте 100 кГц, показали, что плотность мощности шума в ближайшей боковой полосе (мощность на корень квадратный из герц, измеренная на 100 Гц смещения от генерируемой частоты), ниже по крайней мере на 85 дБ уровня основного колебания. Иногда встречается аналогичная схема, но при перемене местами элементов R 2 и С . Хотя это и превосходный генератор, но он имеет крайне зашумленный выходной сигнал.
Представленная на рис. 5.31 схема имеет даже более низкий уровень шума и, кроме того, имеется возможность модулировать выходную частоту с помощью внешнего тока, прикладываемого к базе транзистора Т 1 .

Рис. 5.31. Малошумящий генератор.
В этой схеме транзистор Т 1 функционирует как интегратор, вырабатывая на своем коллекторе сигнал асимметричной треугольной формы. Сами же инверторы работают в качестве неинвертирующего компаратора, изменяя полярность возбуждения на базе каждые полпериода. Эта схема имеет плотность шума — 90 дБ/√Гц, измеренную на частоте 100 Гц смещения от несущего колебания 150 кГц, и —100 дБ/√Гц, измеренную при смещении 300 Гц. Хотя эти схемы превосходны в отношении уровня бокового шума, генерируемая частота имеет большую чувствительность к колебаниям напряжения источника питания, чем другие рассмотренные в этой главе генераторы.
Следующий уровень сложности предполагает использование в качестве релаксационных генераторов ИС таймеров или ИС генераторов колебаний специальной формы. Наиболее популярная ИС таймера - это схема 555 (и ее разновидности). Работа этой ИС часто толкуется неверно, поэтому мы дадим анализ ее работы прямо по изображенной на рис. 5.32 эквивалентной схеме. Некоторые обозначения на ней относятся к области цифровой техники ( гл. 8 и следующие), поэтому вы пока еще не станете экспертом по ИС 555.

Рис. 5.32. Упрощенная эквивалентная схема ИМС 555.
Но принцип действия этого таймера достаточно прост. При подаче сигнала на вход ТРИГГЕР выходной сигнал переключается на ВЫСОКИЙ уровень (около U KK ) и остается в этом состоянии до тех пор, пока не произойдет переключение входа ПОРОГ; в этот момент выходной сигнал падает до НИЗКОГО уровня (около потенциала «земли») и тогда включается транзистор РАЗРЯД. Вход ТРИГГЕР включается при уровне входного сигнала меньше 1/3 U KK , а ПОРОГ — при уровне входного сигнала больше 2/3 U KK . Наиболее легкий способ понять работу ИС 555 — это рассмотреть конкретный пример (рис. 5.33).

Рис. 5.33. ИМС 555, включенная как генератор.
При включении источника питания конденсатор разряжен, поэтому ИС 555 оказывается в состоянии, когда выходной сигнал имеет ВЫСОКИЙ уровень, транзистор разряда Т 1 закрыт и конденсатор начинает заряжаться до 10 В через резисторы R A + R B . Когда его напряжение достигнет 2/3 U KK , переключается вход ПОРОГ и выходной сигнал переходит в состояние НИЗКОГО уровня, одновременно происходит отпирание транзистора Т 1 , разряжающего конденсатор С на землю через резистор R B . Схема переходит в периодический режим работы, и напряжение на конденсаторе С колеблется между значениями 1/3 U KK и 2/31 U KK с периодом Т= 0,693( R A + 2 R B) С. В этом случае с выхода схемы обычно снимается колебание прямоугольной формы.
Упражнение 5.8.Покажите, что период колебаний не зависит от напряжения источника питания.
Схема 555 представляет собой довольно приличный генератор со стабильностью около 1 %. Она может работать от единственного источника питания напряжением от 4,5 до 16 В, сохраняя стабильную частоту при изменениях напряжения источника питания, поскольку пороги следят за флуктуациями питания. Схему 555 можно применять также для формирования одиночных импульсов произвольной длительности и еще для многих целей. К тому же этот небольшой кристалл содержит простые компараторы, вентили и триггеры. В электронной промышленности даже появилась игра - придумать еще новое применение схемы 555. И надо сказать, что многие в этом развлечении преуспевают.
Предостережение: ИС 555, как и другие схемы таймеров, создает мощную («150 мА) токовую помеху в цепи питания во время каждого переключения выходного сигнала. Будет весьма полезным подключить к этой интегральной схеме здоровенный шунтирующий конденсатор. Кроме того, ИС 555 имеет склонность к формированию выходного сигнала с удвоенной частотой переключений.
КМОП ИС 555.Некоторые из неприятных свойств ИС 555 (большой ток потребления от источника питания, высокий ток запуска, удвоенная частота переключения выходного сигнала и неспособность функционировать при очень низких напряжениях источника питания) были устранены в ее КМОП-аналогах. Их можно узнать по цифрам «555», расположенным в какой-либо части маркировки. В табл. 5.3 представлено большинство из этих схем, которые мы смогли найти, а также их наиболее важные параметры.
Следует отметить, в частности, их способность функционировать при очень низких напряжениях питания (до 1 В!) и, как правило, токе потребления. Эти кристаллы также более быстродействующие, чем исходная схема 555. Выходные КМОП-каскады дают максимальный удвоенный перепад напряжения выходного сигнала, по крайней мере при низких токах нагрузки (отметим, что эти кристаллы не имеют мощного выходного каскада, как в типовой схеме 555). Все перечисленные кристаллы (табл. 5.3), кроме исходной схемы 555 и XR-L555, сделаны по КМОП-технологии. Последняя же схема является микромощной биполярной схемой 555 и проявляет свою родословную в виде здоровенной нагрузочной способности и хорошей температурной стабильности. Показанный на рис. 5.33 генератор на схеме 555 вырабатывает выходной сигнал прямоугольной формы, чей рабочий цикл (часть времени, когда выходной сигнал имеет ВЫСОКИЙ уровень) всегда больше 50 %. Это происходит вследствие того, что времязадающий конденсатор заряжается через последовательно включенную пару резисторов R A + R B , а разряжается (более быстро) через единственный резистор R B . На рис. 5.34 показано, как обмануть схему 555 с тем, чтобы получить в рабочем цикле узкие положительные импульсы.
Читать дальшеИнтервал:
Закладка: