Журнал «Юный техник» - Юный техник, 2013 № 09
- Название:Юный техник, 2013 № 09
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2013
- ISBN:0131-1417
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Журнал «Юный техник» - Юный техник, 2013 № 09 краткое содержание
Юный техник, 2013 № 09 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Шаговые двигатели стандартизованы по размерам и диаметру фланца. Например, двигатели NEMA 17, NEMA 23, NEMA 34 имеют диаметр фланца 42 мм, 57 мм и 86 мм соответственно. Шаговые электродвигатели NEMA 23 могут создавать крутящий момент до 30 кгс/см, NEMA 34 — до 120 кгс/см. И так далее, до 210 кгс/см для двигателей с фланцем 110 мм.
Еще одна распространенная разновидность двигателей для робототехники — это серводвигатели или сервоприводы. В мире большой техники к сервоприводам относятся многие регуляторы и усилителей — в частности, рулевое управление и тормозная система на тракторах и автомобилях. Управляют направлением движения сервоприводы и в моделях. Таким способом — с помощью привода с управлением через отрицательную обратную связь — удается точно управлять скоростью и направлением.
Сервопривод хорош тем, что не предъявляет особых требований к электродвигателю и редуктору, компенсирует люфты в приводе, имеет большую скорость перемещения элемента, позволяет мгновенно диагностировать поломки.
Однако при этом сервопривод требует наличия датчиков, им сложнее управлять, а кроме того, такие приводы, как правило, дороже шаговых.
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Калибратор

Что такое калибратор и зачем он нужен? Допустим, вы решили послушать «Радио России» вечерком на коротких волнах. Из программы передач, волнового расписания или еще откуда-то вы узнали, что это радио работает на частоте 7215 кГц. В вашем распоряжении неплохой приемник «Россия 203-1» (2-го класса, между прочим!). Вы глядите на шкалу, и в диапазоне КВ 2 видите деления: 4.0, 4.5, 5.0, 6.0 и 7.3 МГц. Ну, и где искать станцию? Немножко пониже 7,3 МГц? Там станций не меньше десятка! Хорошо еще, если шкала отградуирована в мегагерцах частоты, а если в метрах длины волны?
Может, конечно, помочь формула: длина волны равна скорости света, деленной на частоту. Или, для простоты запоминания, длина волны λ= 300/ f(МГц). Вы можете сосчитать, что частота 7,215 МГц соответствует волне примерно 41,6 м, ну и что? Шкала приемника все равно не имеет столь точной градуировки! Вероятнее всего, вы увидите широкую полоску, охватывающую весь вещательный поддиапазон, над которой написано: «41 м».
Можно, конечно, выкинуть все старые радиоприемники и купить новый, с цифровой шкалой. Но большой прогресс цифровой техники, позволивший выпускать простые и дешевые цифровые шкалы, не означает такого же прогресса в технике радиоприема. Более того, хорошие приемники сейчас разучились делать. У меня на полке стоит подобный приемник ценовой категории менее 1000 рублей, но слушать его нельзя — люфт, скрип и тяжелый ход «веревочного» верньера отбивают всякую охоту трогать ручку настройки, а цифровая шкала (единственное отличие приемника от подобного же, более дешевого ширпотреба) ошибается на пару килогерц.
На Западе действительно хороший, профессиональный радиоприемник купить можно (у нас их просто не выпускают), но цены заоблачные.
Отградуировать шкалу любого, фабричного или самодельного, аппарата, будь то приемник, генератор сигналов или еще какое-нибудь экзотическое устройство, как раз позволяет кварцевый калибратор, о котором и пойдет речь. Основу его составляет высокостабильный генератор, резонатором в котором служит не колебательный контур, а кварцевый кристалл, имеющий какую-нибудь «круглую» частоту: 100 кГц, 1 МГц или 10 Мгц. Не знаю, как сейчас, но раньше выпускали специально для радиолюбителей набор, содержавший три кварцевых резонатора на указанные частоты и стоивший очень недорого.
Другим источником кварцевых резонаторов теперь с успехом служат старые платы от цифровой техники: компьютеров и игровых приставок. Сейчас ведь все, что надо и не надо, стараются сделать на микропроцессорах (МП), а каждый МП требует для своей работы тактового генератора. Производители упорно не желают мотать катушки (дорого и нетехнологично), поэтому наладили широкий выпуск кварцевых резонаторов. Например, из одной старой, выброшенной платы компьютера я выпаял целых пять штук. Частота обычно написана на корпусе, часто встречаются и «круглые» частоты — 4, 8, 12 МГц.
Если собрать на кварцевом резонаторе простенький маломощный генератор и присоединить к нему короткий отрезок провода (10.20 см) в качестве антенны, то сигнал можно принять вашим радиоприемником, и на его шкале появится калиброванная точка. Сигнал принимается очень мощно, ведь приемник — чувствительный прибор и находится рядом, так что ошибиться трудно. К тому же калибратор всегда можно выключить, поднести поближе к приемнику или отнести подальше, чтобы убедиться в приеме именно его сигнала.
В обычном АМ-приемнике сигнал калибратора слышен так же, как немодулированная несущая мощной радиостанции в паузах передачи (по пропаданию помех и более ровному характерному шуму), если же приемник позволяет принимать телеграф и однополосную модуляцию (имеет второй гетеродин), то сигнал слышен как громкий свист понижающегося при точной настройке тона.
Но вот что интересно: если вы настроите приемник на удвоенную, утроенную, учетверенную и так далее частоту калибратора, вы тоже услышите сигнал, возможно, несколько тише. Это гармоники, и они действительно присутствуют в выходном сигнале генератора. Гармоник не содержит только идеально чистый синусоидальный сигнал. Это поясняет рисунок 1, а , где сверху показана зависимость напряжения сигнала от времени, а снизу — его спектр, содержащий лишь одну частоту f o= 1/ T, где: Т— период колебаний (время одного полного колебания).
Рис. 1, а
Добавим к основному колебанию (сплошная линия на рис. 1, б сверху) его третью гармонику — штриховая линия. Результирующая форма сигнала показана красной линией. Теперь она далека от синусоидальной и напоминает скорее прямоугольную. Спектр сигнала содержит уже не одну спектральную линию, а две: основную частоту f o(черная линия на нижнем рисунке) и ее третью гармонику — частоту 3 f o(красная линия). Высота линий соответствует амплитуде гармоник.
Рис. 1, б
Идеально прямоугольный сигнал содержит бесконечное число нечетных гармоник основной частоты, с амплитудами, убывающими обратно пропорционально номеру гармоники. Короткие импульсы содержат как четные, так и нечетные гармоники, которых тем больше, чем круче фронты импульсов.
Из сказанного ясно, что простейший калибратор содержит кварцевый генератор и «исказитель» формы колебаний — генератор гармоник (рис. 2, а ).
Рис. 2, а
Читать дальшеИнтервал:
Закладка: