Авиация и космонавтика 2003 10
- Название:Авиация и космонавтика 2003 10
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2003
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Авиация и космонавтика 2003 10 краткое содержание
Авиация и космонавтика 2003 10 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Запуски экспериментальных ракет HyFly предполагается осуществлять с борта самолета F-4 на высоте 10 км и при скорости полета М=0,85. Первые три испытания отводятся отработке системы сброса ракеты и оценке работоспособности разгонных блоков. В последующем ракета HyFly будет совершать самостоятельные полеты с постепенным увеличением скорости с М=4 до М=6 на высоте 27 км. При нескольких стартах намечается провести испытания отделения от ракеты боезаряда.
В 1996 г. Управление ONR совместно с корпорацией Boeing приступило к разработке ракеты Fasthawk с прямоточным воздушно-реактивным двигателем. В соответствии с техническим заданием, новая ударная система должна иметь следующие характеристики:
– длина (с разгонным блоком) 6,4 м,
– диаметр 0,52 м,
– стартовая масса (с разгонным блоком) 1,54 т,
– масса разгонного блока 634 кг,
– масса топлива (JP-10) 445 кг,
– масса боевой части 317 кг,
– крейсерская скорость полета М=4,
– высота полета 21 км,
– дальность действия 1260 км,
стоимость изготовления одного изделия 350 тыс. долл.

Активно-реактивный снаряд с СПВРД
Отличительной особенностью ракеты Fasthawk является цилиндрический корпус без управляющих поверхностей; подобная схема упрощает конструкцию пускового контейнера, существенно снижает аэродинамическое сопротивление и радиолокационную заметность изделия. Управление ракетой по тангажу и рысканию предполагается осуществлять путем поворота двигательного отсека, по крену – рулями, установленными в лобовом нерегулируемом воздухозаборнике с центральным телом.
Первоначально летные испытания экспериментального образца ракеты Fasthawk намечалось провести в 1999- 2000 гг., однако, технические сложности с созданием маршевого двигателя, теплозащиты и системы наведения, использующей наряду с данными бортовых инерциальных блоков сигналы со спутников «Навстар», вынудили ВМС отложить демонстрационные запуски на более поздний срок.
Летом 2001 г. на технической базе Опытно-конструкторского центра им. Арнольда AEDC (Arnold Engineering Development Center), входящего в структуру ВВС, специалисты Управления DARPA совместно с представителями Лаборатории GASL осуществили несколько запусков миниатюрной ракеты-снаряда, оснащенной СПВРД. В ходе одного из испытаний удалось произвести включение двигателя, развившего расчетную тягу Таким образом, после подготовительных двухлетних работ стоимостью 850 тыс. долл. были получены практические данные о работе подобных силовых установок в условиях реального гиперзвукового полета.
Активно-реактивный снаряд диаметром 10,2 см и длиной около 50 см изготавливался из титана (массовые характеристики изделия не сообщались). Запуски модели выполнялись с помощью двухступенчатой газодинамической пушки, обеспечившей со стартовой перегрузкой 10000 g разгон модели до скорости М=7,1. После выхода из ствола пушки длиной 36 м снаряд находился в свободном полете с работающим двигателем 25 мс, преодолев за это время расстояние в 80 м. Полет проходил в испытательной камере с несколько разреженной атмосферой; торцевая часть камеры была усилена стальными листами.
Опытная модель оснащалась СПВРД, использовавшем в качестве горючего этилен; компонент размещался в емкости под давлением 70,4 кг/ см 3 . Выбор типа горючего был обусловлен тем, что в отличие от водорода подача этого более плотного компонента в камеру сгорания не требовала особой регулировки.
Дальнейшие планы Управления DARPA в реализации проекта ракеты- снаряда предусматривают проведение серии более сложных испытаний изделия. При их выполнении предполагается существенно увеличить длительность экспериментов с тем, чтобы оценить условия стабильного полета и работу двигательной установки в течение не менее 1,2 с. В этих целях снаряд будет оснащаться акселерометрами, расходомером горючего, датчиками давления в камере сгорания и т. п. Вдоль трассы полета длиной 230-300 м через каждые 6 м в двух взаимно перпендикулярных плоскостях планируется устанавливать специальную фотоаппаратуру для проведения видовой съемки.
Разработанный снаряд представляет собой 20%-ную модель перспективной ракеты, которая может найти самое широкое применение, в том числе и для доставки в космос миниспутников. По предварительным оценкам, использование наземных ускоряющих систем и экономичных воздушно-реактивных двигателей позволит повысить относительную массу полезного груза до 0,7 Однако для осуществления подобных запусков потребуются более мощные разгонные средства.
Несколько отходя от основной темы, хочется отметить, что работы по созданию и испытаниям газодинамических пушек активно велись на рубеже 1980-х и 1990-х годов для отработки техники перехвата баллистических ракет по программе «Стратегическая оборонная инициатива» SDI (Strategic Defense Initiative). В рамках проекта SHARP (Super High Altitude Research Project – «Проект сверхвысоких исследований») для полигонных испытаний специалистами Ливерморской национальной лаборатории им. Лоуренса LLNL была собрана двухступенчатая газовая пушка, рассчитанная на разгон снаряда массой 5 кг до скорости 4 км/с (при вертикальном выстреле с такими начальными условиями снаряд поднимется на высоту 450 км) Данная установка представляла собой сборку нагнетательного цилиндра длиной 82 м и диаметром 35,5 см, казенной части с камерой высокого давления и ствола калибра 106 мм и длиной 47 м. Отличительной особенностью установки от предшествовавших образцов являлось перпендикулярное расположение нагнетательного цилиндра и ствола, что позволяет легко и в широком диапазоне менять угол возвышения.
Работа пушки начинается с воспламенения в оконечной части нагнетательного цилиндра метана, продукты горения которого приводят в движение поршень массой 1 т (для компенсации отката цилиндра используются два противовеса массой по 100 т, скользящих по рельсовым направляющим). При движении к казенной части поршень производит сжатие закаченного в цилиндр водорода. После того кок в рабочей камере давление достигнет величины 492 кг/см 5 , срабатывает затвор, перекрывающий пусковую чость ствола, и водород начинает разгон снаряда.
Созданную установку предполагалось использовать для решения задач кинетического поражения высокоскоростных целей. Но после закрытия программы SDI роботы по данной тематике были переориентированы на подготовку элементной базы, которая позволит снизить температурные и динамические нагрузки при запуске снарядов.
Наиболее эффективными нововведениями в конструкции подобных пушек рассматривались альтернативные устройства нагрева и подачи рабочего газа в разгонный ствол. Один из проектов предусматривал разогрев водорода тепловыделяющими элементами – керамическими гранулами размерами 300-400 мкм, способными в малом объеме накапливать значительное количество энергии (до 1000 МДж/м 3 ). При взаимодействии с такими элементами температура водорода может быстро возрасти до 1230 °С, тогда как значение давления будет в пределах 1000-1400 кг/см ! .
Читать дальшеИнтервал:
Закладка: