Владимир Петров - Законы и закономерности развития систем. Книга 3
- Название:Законы и закономерности развития систем. Книга 3
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005160867
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Петров - Законы и закономерности развития систем. Книга 3 краткое содержание
Законы и закономерности развития систем. Книга 3 - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
2. Выявление альтернативных главных функций, используя закономерности изменения функций (глава 12, книга 2).
3. Выбор наилучшей главной функции. Критерии выбора определяет компания.
Выбор принципа действия
1. Определение принципа действия, исследуемой системы, например, используя системный анализ (п. 1.7.2, книга 1).
2. Выявление альтернативных принципов действия, используя различные виды эффектов (физические, химические, биологические, геометрические и т. п.) и/или трансфер технологий.
3. Выбор наилучшего принципа действия. Критерии выбора определяет компания.
Выбор вида рабочего органа
Рабочий орган должен наилучшим образом выполнить выбранный принцип действия системы.
Выбор источника и преобразователя
Источник и преобразователь вещества, энергии и информации должны наилучшим образом обеспечить работоспособность рабочего органа.
Выбор системы управления
Система управления должна наилучшим образом создавать работоспособность всей системы.
Выбор связей
Связи между элементами должны наилучшим образом создавать работоспособность всей системы.
13.6.3. Построение судна
Описание альтернативных способов построения судна начнем с выявления главной функции.
Главная функция судна – перемещение по воде.
Ниже мы представим некоторые альтернативы исполнения рабочего органа, источника и преобразователя энергии, систем управления и корпусов.
Первоначально рассмотрим возможные виды рабочего органа. Рабочим органом любого средства передвижения, в том числе и судна, является движитель .
Движитель
На поверхности воды движитель для реакции опоры может использовать воздух, воду, их сочетание или одновременно две среды.
Первоначально рассмотрим альтернативы движителей, использующих воздух.
Пример 13.41. Движители, использующие воздух
К движителям, использующим энергию ветра, относятся: парус, крыло, вращающийся ротор и т. д. В судостроении их принято называть ветродвижителями (рис. 13.10).

Рис. 13.10. Ветродвижители 9 9 Крючков Ю. С., Перестюк И. Е. Крылья океана . – Л.: Судостроение, 1983. С. 38.
а – мягкие паруса; б— полужесткие паруса; в – жесткие паруса-крылья; г – авторотирующий пропеллер; д – вращающийся ротор, работа этого ротора основана на эффекте Магнуса
Теперь рассмотрим альтернативы движителей, использующих воду.
Пример 13.42. Движители, использующие воду
Воду для «опоры» используют следующие движители: весло, гребное колесо и гребной винт, водомет, реактивная струя (рис. 13.11).

Рис. 13.11. Движители, использующие воду
Источник и преобразователь энергии Двигатель
В качестве двигателей в судах используют: дизель, турбину, атомный реактор и значительно реже электродвигатель. Раньше использовали весла, паровой двигатель.
Пример 13.43. Двигатели
Наиболее часто встречающиеся в судостроении двигатели показаны на рис. 13.12 10 10 Суда и судоходство будущего : Пер. с нем. / Шенкнехт Р., Люш Ю., Шельцель М. И. др. – Л.: Судостроение, 1981. – 208 с. – С. 69.
.

Рис. 13.12. Судовые энергетические установки:
1 – низкооборотный дизель, непосредственно работающий на гребной винт; 2 – дизель-редукторная установка; 3 – паротурбинная установка; 4 – газовая турбина; 5 – атомная установка; 6 – газотурбинная установка с электрической передачей на винт.
Источники энергии
Существует много различных источников энергии. В судостроении в основном используются нефтепродукты. В меньшей степени используется атомная энергия. Снова начинают использовать энергию ветра (некоторые примеры были приведены выше). Незначительно используется энергия солнца. Совсем не используется вода и движение волн.
В автомобилестроении имеются тенденции уменьшить загрязнение окружающей среды. Уже выпускаются гибридные автомобили, использующие комбинированные источники топлива.
Многие компании сейчас разрабатывают автомобили, использующие экологически чистые виды энергии:
• электричество;
• водород;
• воду;
• воздух;
• биологическое топливо.
Пример 13.44. Водяной двигатель
В. Д. Дудышев предложил проект водяного двигателя 11 11 URL: http://www.ntpo.com/izobreteniya-dudysheva/6850-metody-preobrazovaniya-energii-elektrogidravlicheskogo-udara-i-kavitacii-zhidkosti-v-teplo-i-inye-vidy-energii.html .
. Двигатель работает за счет создания электрогидравлического давления воды, образованного электрогидравлическим ударом. Эта энергия преобразуется в механическую, например, за счет движения поршня аналогично ДВС или иным путем, например, роторными, по аналогии с роторным двигателем Ванкеля.
На рис. 13.13 представлен электроводяной поршневой двигатель. При электроразряде через воду происходит электрогидравлический удар. В рабочей камере двигателя образуется перепад давления воды, который перемещает поршень.
Для сглаживания динамической нагрузки в момент такого удара предложен специальный электромагнитный демпфер-накопитель. Этот управляемый по силе удар образуется в момент мощного электрического (искрового, дугового) разряда через жидкость (электрогидравлический эффект Юткина).

Рис. 13.13. Двухпоршневой электрогидравлический двигатель
Пример 13.45. Воздушный двигатель
Индийская компания Tata создала автомобиль под названием Air Car (рис. 13.14). Двигатель к этому автомобилю разработал французский конструктор Гай Негре. В качестве топлива используется сжатый воздух, который вырабатывается уникальным компрессором. «Топливо» находится в карбоновых баллонах объемом 340 л. Заправить автомобиль можно за две минуты на любой АЗС или с помощью прилагаемого компрессора за 4 ч. По расчетам производителей, заправка автомобиля на АЗС обойдется не дороже полутора долларов. Между двумя полными заправками Air Car способен пройти до 200 км при максимальной скорости 109 км/ч.
Принцип работы двигателя Негре – смешение горячего и холодного воздуха, сжатого до давления в 300 атмосфер. Два этих потока, попадая в одну емкость, резко расширяясь, перемещают поршень ДВС.
Читать дальшеИнтервал:
Закладка: