Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения
- Название:Как учится машина. Революция в области нейронных сетей и глубокого обучения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2021
- Город:Москва
- ISBN:9785907470552
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения краткое содержание
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.
Как учится машина. Революция в области нейронных сетей и глубокого обучения - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Происхождение метода относится к середине прошлого века. Еще в 1950-х гг. пионеры искусственного интеллекта поддерживали теории, разработанные Дональдом Хеббом, канадским психологом и нейробиологом, который, в частности, размышлял о роли нейронных связей в обучении. Вместо того чтобы воспроизводить логические цепочки человеческих рассуждений, почему бы не исследовать их носитель, этот потрясающий биологический процессор, которым является мозг?
Таким образом, исследователи вычислений сконцентрировались на нейронном способе обработки информации в отличие от ранее применявшейся логической, или «последовательной», обработки. Они нацелились на моделирование биологических нейронных цепей. Машинное обучение, на которое были направлены их усилия, основывалось на оригинальной архитектуре, сети математических функций, которые по аналогии называют «искусственными нейронами».
Они улавливают входной сигнал, и нейроны в сети обрабатывают его таким образом, что на выходе этот сигнал идентифицируется. Сложность операции, например, распознавание образов, поддерживается комбинированным взаимодействием очень простых элементов, а именно искусственных нейронов. Так и в нашем мозге взаимодействие основных функциональных единиц – нейронов – порождает сложные мысли.
Возникновение описываемой концепции датируется 1957 г.: в том же году в Корнельском университете психолог Фрэнк Розенблатт, вдохновленный когнитивной теорией Дональда Хебба, построил перцептрон – первую обучающуюся машину. Мы рассмотрим ее в следующей главе, так как она являются эталонной моделью машинного обучения. После обучения перцептрон способен, например, распознавать образы (геометрические фигуры, буквы и т. д.).
В 1970-х гг. два американца, Ричард Дуда, в то время профессор электротехники в Университете Сан-Хосе (Калифорния), и Питер Харт – ученый-компьютерщик из SRI (Стэнфордского исследовательского института) в Менло-Парке (Калифорния), обсуждали все эти так называемые методы «распознавания статистических форм [13] Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis, Wiley, 1973.
», примером которых является перцептрон. С самого начала их руководство стало мировым эталоном, Библией распознавания образов для всех студентов… и для меня тоже.
Но перцептрон далеко не всесилен. Система, состоящая из одного слоя искусственных нейронов, имеет «врожденные» ограничения. Исследователи пытались увеличить его эффективность, вводя несколько слоев нейронов вместо одного. Но без алгоритма обучения слоев, который к тому моменту еще не был известен, такие машины все еще оставались очень малоэффективными.
Эпоха застоя
Перейдем к кому времени, когда в 1969 г. Сеймур Паперт и Марвин Мински – тот самый, который в 1950-х гг. увлекался искусственными нейронными сетями, прежде чем отречься от них, опубликовали книгу «Перцептроны: Введение в вычислительную геометрию» [14] Marvin L. Minsky, Seymour A. Papert, Perceptrons: An Introduction to Computional Geometry, The MIT Press, 1969.
. Они математически доказали пределы возможностей перцептрона, и некоторые из доказанных ими ограничений по сути поставили крест на использовании этой и подобных машин.
Казалось, развитие уперлось в непреодолимую стену. Эти два профессора Массачусетского технологического института пользовались большим авторитетом, так что их работа наделала много шума. Агентства, финансирующие исследования, прекратили поддержку исследовательских работ в этой области. Как и исследования в GOFAI, исследования нейронных сетей пережили серьезный застой.
В этот период большинство ученых перестали говорить о создании умных машин, способных к обучению. Они предпочитали ограничивать свои амбиции более приземленными проектами. Используя методы, унаследованные от нейронных сетей, они создали, например, «адаптивную фильтрацию» – процесс, лежащий в основе многих коммуникационных технологий в современном мире. Прежде физические свойства проводных линий связи сильно ограничивали передачу высокочастотных сигналов, приводя к их существенным искажениям уже на расстоянии нескольких километров. Теперь сигнал восстанавливается с помощью адаптивного фильтра. Используемый алгоритм называется Luckyʼs Algorithm в честь его изобретателя Боба Лаки, который в конце 1980-х руководил отделом Bell Labs, где тогда работало около 300 человек. в том числе и я.
Без адаптивной фильтрации у нас не было бы телефона с громкой связью, который позволяет вам говорить в микрофон без самовозбуждения, происходящего от усиления микрофоном звука громкоговорителя (когда это случается, мы слышим громкий вой или свист). В эхокомпенсаторах, кстати, используются алгоритмы, очень похожие на алгоритм перцептрона.
Не появился бы без этой технологии и модем [15] Устройство, состоящее из модулятора и демодулятора, предназначенное для передачи цифровых данных по телефону или по коаксиальному кабелю.
. Это устройство позволяет одному компьютеру коммуницировать с другим компьютером по телефонной линии или иной линии связи.
Преданные последователи
Тем не менее, и во времена застоя в 1970-х и 1980-х гг. некоторые ученые продолжали работать над нейронными сетями, хотя научное сообщество считало их сумасшедшими, чуть ли не фанатиками. Я имею в виду Теуво Кохонена, финна, который написал об «ассоциативных воспоминаниях» – теме, близкой к нейронным сетям. Я также говорю и о группе японцев – в Японии существует изолированная инженерная экосистема, отличная от западной, – и среди них о математике Сун-Ити Амари и исследователе искусственного интеллекта Кунихико Фукусима. Последний работал над машиной, которую он назвал «когнитроном», по аналогии с термином «перцептрон». Он создал две его версии: «когнитрон» 1970-х и «неокогнитрон» 1980-х. Как и Розенблатт в свое время, Фукусима был вдохновлен достижениями нейробиологии, особенно открытиями американца Дэвида Хьюбела и шведа Торстен Н. Визеля.
Эти два нейробиолога получили Нобелевскую премию по физиологии в 1981 г. за свою работу над зрительной системой кошек. Они обнаружили, что зрение возникает в результате прохождения визуального сигнала через несколько слоев нейронов, от сетчатки до первичной зрительной коры, затем в другие области зрительной коры, и, наконец – в нижневисочную кору. Нейроны в каждом из этих слоев выполняют особые функции. В первичной зрительной коре каждый нейрон связан только с небольшой областью поля зрения, а именно со своим рецепторным полем. Такие нейроны называются «простыми». В следующем слое другие нейроны включают активацию предыдущего слоя, что помогает поддерживать представление изображения, если объект немного перемещается в поле зрения. Такие нейроны называются «сложными».
Читать дальшеИнтервал:
Закладка: