Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Тут можно читать онлайн Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения - бесплатно ознакомительный отрывок. Жанр: sci_tech, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Как учится машина. Революция в области нейронных сетей и глубокого обучения
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785907470552
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения краткое содержание

Как учится машина. Революция в области нейронных сетей и глубокого обучения - описание и краткое содержание, автор Ян Лекун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения - читать онлайн бесплатно ознакомительный отрывок

Как учится машина. Революция в области нейронных сетей и глубокого обучения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ян Лекун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Постоянное совершенствование

Я уверен, что глубокое обучение – это неотъемлемая часть будущего искусственного интеллекта. Однако на сегодняшний день эти системы не способны к логическим рассуждениям. В то же время подходы к ИИ, основанные на логике, в нынешнем их состоянии несовместимы с обучением. Наша важнейшая задача на ближайшие годы – сделать эти два подхода совместимыми друг с другом.

Таким образом, глубокое обучение пока остается очень мощным… и очень ограниченным инструментом. Речь не идет о том, чтобы заставить машину, обученную игре в шахматы, работать, и наоборот. Она выполняет действия, не имея ни малейшего представления о том, что делает, и не обладает здравым смыслом. Если бы системы искусственного интеллекта были помещены на шкалу интеллектуальных способностей от мыши до человека, то они оказались бы намного ближе к мыши, чем к человеку – и это несмотря на то, что производительность ИИ в точных и узкоспециализированных задачах является сверхчеловеческой.

Могущество алгоритма

Алгоритм – это последовательность инструкций. Вот и все. В этом нет ничего волшебного. Ничего непонятного. Приведем пример. Возьмем список цифр, которые я хочу расставить в порядке возрастания. Я пишу компьютерную программу, которая считывает первое число, сравнивает его со следующим и меняет их положение, если первое больше второго. Затем я сравниваю второе и третье и повторяю ту же операцию до последнего числа в списке. Затем я возвращаюсь к списку столько раз, сколько необходимо, пока при очередном проходе число произошедших замен не станет равным нулю.

Данный алгоритм сортировки списка чисел называется «сортировкой пузырьком». Я могу перевести его в серию точных инструкций на вымышленном языке программирования [10] https://fr.wikipedia.org/wiki/Tri_a_bulles . .

Сортировка пузырьком (Таблица Т)

### дляi в диапазоне от(значение T) –1 до1

### ### дляj в диапазоне от0 доi –1

### ### ### еслиT[j+1] < T[j]

### ### ### ### обменять (T, j+1, j)

Возьмите одно значение, сравните его с другим, прибавьте его к третьему, выполните такие-то и такие-то математические операции, циклы, проверьте, является ли условие истинным или ложным и т. д. Алгоритм – все равно, что кулинарный рецепт.

Мы обычно говорим об «алгоритме Фейсбука» или «алгоритме Гугла». Это неправильно. Скорее, алгоритмом (точнее, набором алгоритмов) является механизм, обеспечивающий работу поискового сайта, который создает список всех сайтов, содержащих поисковый текст. Таких сайтов может быть сотни, даже тысячи! Затем каждому из этих сайтов присваивается ряд баллов, полученных с помощью других алгоритмов, написанных вручную или выработанных самой машиной в процессе обучения. Эти баллы оценивают популярность сайта, его надежность, релевантность его содержания, наличие ответа, если поисковая фраза является вопросом, а также соответствие содержания интересам пользователя. Довольно сложное дело.

Однако, что касается обучаемых систем, то программный код, который заставляет их работать и вычисляет баллы, достаточно прост и мог бы уместиться в нескольких строках, если бы нас не интересовала скорость его выполнения (на самом деле требования к быстродействию приводят к его усложнению). Реальная сложность системы заключается не в коде, который вычисляет ее выходные данные, а в связях между нейронами сети, которые, в свою очередь, зависят от архитектуры этой сети и ее обучения.

Прежде чем мы с вами исследуем внутреннее устройство интеллектуальной машины, я хочу обрисовать историю искусственного интеллекта, начиная с середины XX века. Это – захватывающая история, в которой я принимаю участие уже довольно давно, и которая состоит из предвидений и дискуссий, скачков вперед и периодов застоя, где между собой столкнулись ученые, верящие в машинную логику, и те, кто, опираясь на нейробиологию и кибернетику, работают, как и я, над развитием способностей машин к обучению.

Глава 2

Краткая история искусственного интеллекта… и моего карьерного пути

Вечный поиск

Американский автор Памела Маккордак заметила как-то, что история искусственного интеллекта начинается с «извечного желания играть в Бога». Издавна человек пытается сконструировать устройства, создающие иллюзию жизни. В XX веке достижения науки дали надежду на механизацию мыслительного процесса. С появлением первых роботов и компьютеров в 1950-х гг. некоторые утописты предсказывали, что вычислительные машины быстро достигнут уровня человеческого интеллекта. Фантасты описали такие компьютеры во всех подробностях, но на сегодняшний день мы еще далеки от их воплощения в реальность.

Прогресс на этом долгом пути зависит от технических инноваций: более быстрые процессоры, более емкие устройства памяти. В 1977 г. у суперкомпьютера Cray-1 вычислительная мощность составляла 160 MFLOPS (мегафлопс). Он весил 5 т, потреблял 115 кВт·ч и стоил 8 млн долларов. На сегодняшний день игровая видеокарта стоимостью 300 евро, которую можно найти в компьютере у каждого второго увлеченного видеоиграми школьника, обеспечивает скорость 10 TFLOPS (терафлопс), или в 60 000 раз больше. Скоро любой смартфон сможет похвастаться такой мощностью.

История искусственного интеллекта в современном понимании берет начало с Дартмутского семинара, на котором впервые и прозвучал сам термин «искусственный интеллект». Семинар проходил летом 1956 г. в Дартмутском колледже недалеко от Ганновера, штат Нью-Гэмпшир, и был организован двумя исследователями – Марвином Мински и Джоном МакКарти. Марвин Мински был увлечен концепцией самообучающейся машины. В 1951 г. он в компании еще одного студента из Принстона построил одну из первых подобных машин, SNARC, небольшую электронную нейронную сеть с 40 «синапсами», способную к элементарному обучению. Джон МакКарти, в свою очередь, изобрел LISP, язык программирования, широко используемый в разработке ИИ.

Джону МакКарти также приписывают применение графов для создания шахматных программ. В работе семинара приняло участие около 20 исследователей, в том числе Клод Шеннон, инженер-электротехник и математик из Bell Labs (лаборатории гигантской телефонной компании AT&T в Нью-Джерси), Натан Рочестер из IBM и Рэй Соломонофф – основоположник концепции машинного обучения.

Участники бурно обсуждали области, движимые зарождающимися автоматизированными вычислениями и кибернетикой: изучение правил в естественных и искусственных системах, сложная обработка информации, искусственные нейронные сети, теория автоматов… На этом небольшом семинаре были разработаны и декларированы основные принципы и подходы к созданию искусственного интеллекта. Сам термин предложил все тот же Джон МакКарти.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ян Лекун читать все книги автора по порядку

Ян Лекун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Как учится машина. Революция в области нейронных сетей и глубокого обучения отзывы


Отзывы читателей о книге Как учится машина. Революция в области нейронных сетей и глубокого обучения, автор: Ян Лекун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x