Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения

Тут можно читать онлайн Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения - бесплатно ознакомительный отрывок. Жанр: sci_tech, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Как учится машина. Революция в области нейронных сетей и глубокого обучения
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    9785907470552
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ян Лекун - Как учится машина. Революция в области нейронных сетей и глубокого обучения краткое содержание

Как учится машина. Революция в области нейронных сетей и глубокого обучения - описание и краткое содержание, автор Ян Лекун, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Мы живем во время революции, еще 50 лет назад казавшейся невероятной, – революции в области умных машин, которые теперь обучаются самостоятельно, вместо того чтобы просто выполнять запрограммированные команды. И возможности таких машин огромны: распознавание изображений, лиц и голосов, переводы на сотни языков, беспилотное управление автомобилями, обнаружение опухолей на медицинских снимках и многое другое.
Автор книги Ян Лекун стоит у истоков этой революции. Лауреат премии Тьюринга, профессор Нью-Йоркского университета и руководитель фундаментальными исследованиями в Facebook, он является одним из изобретателей глубокого обучения, применяемого к так называемым искусственным нейронным сетям, архитектура и функционирование которых вдохновлены устройством человеческого мозга. В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы.
Сегодня искусственный интеллект действительно меняет все наше общество. Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

Как учится машина. Революция в области нейронных сетей и глубокого обучения - читать онлайн бесплатно ознакомительный отрывок

Как учится машина. Революция в области нейронных сетей и глубокого обучения - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Ян Лекун
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сторонники традиционного машинного обучения перестали высмеивать нейронные сети в 2010 г., когда последние наконец продемонстрировали свою эффективность. Лично я никогда не сомневался в успехе. Я всегда был убежден, что человеческий интеллект настолько сложен, что для того, чтобы его скопировать, нужно стремиться построить самоорганизующуюся систему, способную учиться самостоятельно, через опыт.

Сегодня эта форма искусственного интеллекта так и осталась наиболее перспективной, благодаря доступности больших баз данных и прогрессу в разработке оборудования, например графических процессоров, намного увеличивших вычислительную мощность компьютеров.

По окончании учебы я планировал провести несколько лет в Северной Америке. И я все еще там! После некоторых жизненных перипетий я попал в компанию Facebook, владеющую сайтом с 2 миллиардами активных пользователей, чтобы вести фундаментальные исследования в области ИИ. Это – тоже часть моей публичной биографии. Я не хочу скрывать ничего из того, что происходит в компании Марка Цукерберга, которой в 2018 г. были предъявлены серьезные обвинения, и чье безграничное расширение вызывает опасение. В любом случае – я сторонник открытости.

В марте 2019 г. я был удостоен премии Тьюринга за 2018 г. от Ассоциации вычислительной техники – своего рода Нобелевской премии в компьютерной области. Я разделил эту награду с двумя другими специалистами по глубокому обучению, Йошуа Бенджио и Джеффри Хинтоном, моими партнерами, с которыми мы много спорили, но всегда сходились в главном.

Я многим обязан всем этим встречам, месту, которое я со временем занял в сообществе безумных наследников кибернетики 1950-х гг., не устававшим задавать друг другу «детские» на вид, но глубокие по сути вопросы, вроде: «Как получается, что нейроны, очень простые объекты, соединяясь друг с другом, производят новое свойство, которое называется интеллектом?»

Теперь эта научная авантюра порождает новые важные вопросы. Отличается ли работа машины, которая распознает автомобиль посредством выделения таких элементов, как колеса, лобовое стекло и т. д. от работы нашей зрительной коры при идентификации той же самой машины? Что делать с наблюдаемым сходством между работой машины и мозгом человека или животного? Область исследования безгранична.

Посмотрим правде в глаза: машины, какими бы мощными и сложными они ни были, по-прежнему очень узкоспециализированы. Они учатся менее эффективно, чем люди и животные. По сей день у них нет ни здравого смысла, ни совести. По крайней мере, пока! Несомненно, они превосходят людей в определенных задачах: например, побеждают их в го и в шахматах; они переводят сотни языков, они узнают растения или насекомых, они обнаруживают опухоли на медицинских изображениях. Но человеческий мозг сохраняет значительное преимущество перед машинами в том, что он более универсален и гибок.

Смогут ли машины догнать нас, и если да – то как скоро?

Глава 1

Революция в искусственном интеллекте

Искусственный интеллект проникает во все секторы экономики, связи, здравоохранения и даже транспорта – благодаря созданию беспилотных автомобилей… Многие наблюдатели говорят уже не о технологической эволюции, а о революции.

Вездесущий искусственный интеллект

«Алекса, какая погода в Буэнос-Айресе?» Менее чем за секунду «умная» акустическая система записывает вопрос, передает его через домашний Wi-Fi на серверы Amazon, которые транскрибируют и интерпретируют его. Затем они получают информацию от метеорологической службы и возвращают ответ, который Алекса озвучивает приятным голосом: «В настоящее время в Буэнос-Айресе, Аргентина, температура воздуха 22 ℃. Пасмурно».

В офисе ИИ – прилежный помощник. Он работает быстро, и его не пугают повторяющиеся задачи. Он может просмотреть миллионы записей в базе денных в поисках цитаты и найти нужную за долю секунды благодаря возможностям современных компьютеров, скорость вычислений у которых сделалась почти невероятной.

Один из первых программируемых электронных компьютеров, ENIAC, построенный в 1945 г. в Университете Пенсильвании для расчета траектории полета снарядов, выполнял приблизительно 360 умножений в секунду для десятизначных цифр. Сейчас эта машина выглядит неповоротливым доисторическим чудищем. Процессоры нынешних персональных компьютеров в миллиард раз быстрее. Они имеют производительность в сотни гигафлопс [1] FLOPS (обозначается также как flops, flop/s, произносится по-русски как «флопс») – акроним от англ. Floating-point Operations Per Second (число операций с плавающей точкой в секунду). Представляет собой внесистемную единицу измерения производительности компьютеров. Правописание и склонение термин в русском языке еще не устоялось: иногда пишут «флоп», иногда «флопс». – Прим. ред. . Графические процессоры, используемые нашими компьютерами для визуализации, имеют производительность в несколько десятков терафлопс. Гигантские числа с впечатляющими названиями.

Их уже не остановить! Современные суперкомпьютеры объединяют десятки тысяч этих графических процессоров и достигают скорости в сотни тысяч терафлопс, производя колоссальные объемы вычислений для всевозможных симуляций: прогнозирования погоды, моделирования климата, расчета воздушного потока вокруг самолета или конформации белка, моделирования таких головокружительных событий, как первые мгновения существования Вселенной, смерть звезды, эволюция галактик, столкновения элементарных частиц или ядерный взрыв.

Такие симуляции включают численное решение дифференциальных уравнений или уравнений в частных производных – это задача, которую в прошлом математикам приходилось решать вручную. И все же – так ли умны эти вычислительные гиганты, как математики прошлых лет? Нет, конечно… во всяком случае, пока. Одна из задач развития искусственного интеллекта заключается в том, чтобы когда-нибудь научить машины использовать их огромную вычислительную мощность для решения интеллектуальных задач, сейчас подвластных только животным и людям.

Не стоит судить только по внешности. Программы искусственного интеллекта умеют хорошо учиться, но лишь до определенного момента. В 2017 г. робот Норико Араи – специалиста Токийского университета, изучавшего влияние ИТ на общество, успешно сдал вступительный экзамен в один из японских университетов. Программа, получившая название Todai (название университета), сдала эссе, экзамены по математике и английскому языку лучше 80 % абитуриентов. Но это не значит, что система была умной: на самом деле робот вообще не понимал, что он пишет! Успех программы скорее говорит о несовершенстве как вступительных испытаний в высшие успешные заведения Японии, так и машинного интеллекта. Мы были бы рады, если, в конечном счете, Todai провалится на более продуманно организованных экзаменах.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ян Лекун читать все книги автора по порядку

Ян Лекун - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Как учится машина. Революция в области нейронных сетей и глубокого обучения отзывы


Отзывы читателей о книге Как учится машина. Революция в области нейронных сетей и глубокого обучения, автор: Ян Лекун. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x